IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3291-d1375990.html
   My bibliography  Save this article

Design and Simulation of the Biodiesel Process Plant for Sustainable Fuel Production

Author

Listed:
  • Abul Kalam Azad

    (School of Engineering and Technology, Central Queensland University, 120 Spencer Street, Melbourne, VIC 3000, Australia)

  • Abhijaysinh Chandrasinh Jadeja

    (School of Engineering and Technology, Central Queensland University, 120 Spencer Street, Melbourne, VIC 3000, Australia)

  • Arun Teja Doppalapudi

    (School of Engineering and Technology, Central Queensland University, 120 Spencer Street, Melbourne, VIC 3000, Australia)

  • Nur Md Sayeed Hassan

    (School of Engineering and Technology, Central Queensland University, Cairns, QLD 4870, Australia)

  • Md Nurun Nabi

    (School of Engineering and Technology, Central Queensland University, 120 Spencer Street, Melbourne, VIC 3000, Australia)

  • Roshan Rauniyar

    (School of Engineering and Technology, Central Queensland University, 120 Spencer Street, Melbourne, VIC 3000, Australia)

Abstract

The biodiesel production process is extensively studied in the literature, focusing on mechanisms, modeling, and economic aspects, yet plant design and fluid flow losses remain underexplored areas. The study addressed this gap by designing a biodiesel production plant, analyzing flow losses, and developing a pipe network and suitable pump models. In this study, an integration of biodiesel production plant design and simulation of continuous production of Calophyllum inophyllum biodiesel was investigated. Biodiesel production encompasses complex stages that involve systematic planning and system design. The goal of the plant design is to reduce the losses that occur during the conversion process, which can reduce the capital cost of the plant. A few assumptions were made when selecting biodiesel plant materials, such as pipes, pumps, fittings, and bends. These assumptions were based on considerations of the biodiesel fluid properties and pressure requirements. On the other hand, Aspen Plus was used to simulate the biodiesel production process. Calophyllum inophyllum was considered oil as the biodiesel feedstock and was inputted to the Aspen Plus as triglyceride composition. The simulation was carried out with rigorous kinetic reactions using the Non-Random Two-Liquid (NRTL) method to predict the liquid equilibrium in the reactor. Results revealed that the designed steel pipe meets safety requirements with a bursting pressure of 49.68MPa, capable of withstanding the maximum pressure of 4 bar and turbulent flow conditions. Additionally, the selected pump satisfies the required head and flow rate, ensuring efficient fluid movement. Moreover, simulation results closely matched experimental data, and 88% of biodiesel yield was recorded.

Suggested Citation

  • Abul Kalam Azad & Abhijaysinh Chandrasinh Jadeja & Arun Teja Doppalapudi & Nur Md Sayeed Hassan & Md Nurun Nabi & Roshan Rauniyar, 2024. "Design and Simulation of the Biodiesel Process Plant for Sustainable Fuel Production," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3291-:d:1375990
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suhaiza Zailani & Mohammad Iranmanesh & Sunghyup Sean Hyun & Mohd Helmi Ali, 2019. "Barriers of Biodiesel Adoption by Transportation Companies: A Case of Malaysian Transportation Industry," Sustainability, MDPI, vol. 11(3), pages 1-15, February.
    2. Glisic, Sandra B. & Pajnik, Jelena M. & Orlović, Aleksandar M., 2016. "Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production," Applied Energy, Elsevier, vol. 170(C), pages 176-185.
    3. Suman Dey & Akhilendra Pratap Singh & Sameer Sheshrao Gajghate & Sagnik Pal & Bidyut Baran Saha & Madhujit Deb & Pankaj Kumar Das, 2023. "Optimization of CI Engine Performance and Emissions Using Alcohol–Biodiesel Blends: A Regression Analysis Approach," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    4. Gulzar Ahmad & Shahid Imran & Muhammad Farooq & Asad Naeem Shah & Zahid Anwar & Ateekh Ur Rehman & Muhammad Imran, 2023. "Biodiesel Production from Waste Cooking Oil Using Extracted Catalyst from Plantain Banana Stem via RSM and ANN Optimization for Sustainable Development," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    5. Ibrahim M. Hezam & Naga Rama Devi Vedala & Bathina Rajesh Kumar & Arunodaya Raj Mishra & Fausto Cavallaro, 2023. "Assessment of Biofuel Industry Sustainability Factors Based on the Intuitionistic Fuzzy Symmetry Point of Criterion and Rank-Sum-Based MAIRCA Method," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    6. Vlysidis, Anestis & Binns, Michael & Webb, Colin & Theodoropoulos, Constantinos, 2011. "A techno-economic analysis of biodiesel biorefineries: Assessment of integrated designs for the co-production of fuels and chemicals," Energy, Elsevier, vol. 36(8), pages 4671-4683.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.
    2. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.
    3. Tsiotsias, Anastasios I. & Hafeez, Sanaa & Charisiou, Nikolaos D. & Al-Salem, Sultan M. & Manos, George & Constantinou, Achilleas & AlKhoori, Sara & Sebastian, Victor & Hinder, Steven J. & Baker, Mark, 2023. "Selective catalytic deoxygenation of palm oil to produce green diesel over Ni catalysts supported on ZrO2 and CeO2–ZrO2: Experimental and process simulation modelling studies," Renewable Energy, Elsevier, vol. 206(C), pages 582-596.
    4. Kim, Tae-Hyoung & Lee, Kyungho & Oh, Baek-Rock & Lee, Mi-Eun & Seo, Minji & Li, Sheng & Kim, Jae-Kon & Choi, Minkee & Chang, Yong Keun, 2021. "A novel process for the coproduction of biojet fuel and high-value polyunsaturated fatty acid esters from heterotrophic microalgae Schizochytrium sp. ABC101," Renewable Energy, Elsevier, vol. 165(P1), pages 481-490.
    5. Anas A. Makki & Reda M. S. Abdulaal, 2023. "A Hybrid MCDM Approach Based on Fuzzy MEREC-G and Fuzzy RATMI," Mathematics, MDPI, vol. 11(17), pages 1-19, September.
    6. Sakdasri, Winatta & Sawangkeaw, Ruengwit & Ngamprasertsith, Somkiat, 2018. "Techno-economic analysis of biodiesel production from palm oil with supercritical methanol at a low molar ratio," Energy, Elsevier, vol. 152(C), pages 144-153.
    7. Lopes, Daniela de Carvalho & Steidle Neto, Antonio José & Mendes, Adriano Aguiar & Pereira, Débora Tamires Vítor, 2013. "Economic feasibility of biodiesel production from Macauba in Brazil," Energy Economics, Elsevier, vol. 40(C), pages 819-824.
    8. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Zaroni, Hebert & Maciel, Letícia B. & Carvalho, Diego B. & Pamplona, Edson de O., 2019. "Monte Carlo Simulation approach for economic risk analysis of an emergency energy generation system," Energy, Elsevier, vol. 172(C), pages 498-508.
    10. Lim, Steven & Lee, Keat Teong, 2014. "Investigation of impurity tolerance and thermal stability for biodiesel production from Jatropha curcas L. seeds using supercritical reactive extraction," Energy, Elsevier, vol. 68(C), pages 71-79.
    11. Tran, Nghiep Nam & Tišma, Marina & Budžaki, Sandra & McMurchie, Edward J. & Gonzalez, Olivia Maria Morales & Hessel, Volker & Ngothai, Yung, 2018. "Scale-up and economic analysis of biodiesel production from recycled grease trap waste," Applied Energy, Elsevier, vol. 229(C), pages 142-150.
    12. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.
    13. Szulczyk, Kenneth R. & Badeeb, Ramez Abubakr, 2022. "Nontraditional sources for biodiesel production in Malaysia: The economic evaluation of hemp, jatropha, and kenaf biodiesel," Renewable Energy, Elsevier, vol. 192(C), pages 759-768.
    14. Tańczuk, Mariusz & Ulbrich, Roman, 2013. "Implementation of a biomass-fired co-generation plant supplied with an ORC (Organic Rankine Cycle) as a heat source for small scale heat distribution system – A comparative analysis under Polish and G," Energy, Elsevier, vol. 62(C), pages 132-141.
    15. Daniel José Bernier-Oviedo & Alexandra Eugenia Duarte & Óscar J. Sánchez, 2025. "Evaluation and Design of Supply Chains for Bioenergy Production," Energies, MDPI, vol. 18(8), pages 1-50, April.
    16. Gutiérrez Ortiz, F.J. & Ollero, P. & Serrera, A. & Galera, S., 2012. "Process integration and exergy analysis of the autothermal reforming of glycerol using supercritical water," Energy, Elsevier, vol. 42(1), pages 192-203.
    17. Taylor, Benjamin & Xiao, Ning & Sikorski, Janusz & Yong, Minloon & Harris, Tom & Helme, Tim & Smallbone, Andrew & Bhave, Amit & Kraft, Markus, 2013. "Techno-economic assessment of carbon-negative algal biodiesel for transport solutions," Applied Energy, Elsevier, vol. 106(C), pages 262-274.
    18. Janbarari, Seyed Reza & Ahmadian Behrooz, Hesam, 2020. "Optimal and robust synthesis of the biodiesel production process using waste cooking oil from different feedstocks," Energy, Elsevier, vol. 198(C).
    19. Aniya, Vineet & De, Debiparna & Singh, Ashish & Satyavathi, B., 2018. "Design and operation of extractive distillation systems using different class of entrainers for the production of fuel grade tert-butyl Alcohol:A techno-economic assessment," Energy, Elsevier, vol. 144(C), pages 1013-1025.
    20. Tiago Bastos & Leonel J. R. Nunes & Leonor Teixeira, 2025. "Fostering Circularity in Agroforestry Biomass: A Regulatory Framework for Sustainable Resource Management," Land, MDPI, vol. 14(2), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3291-:d:1375990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.