IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3291-d1375990.html
   My bibliography  Save this article

Design and Simulation of the Biodiesel Process Plant for Sustainable Fuel Production

Author

Listed:
  • Abul Kalam Azad

    (School of Engineering and Technology, Central Queensland University, 120 Spencer Street, Melbourne, VIC 3000, Australia)

  • Abhijaysinh Chandrasinh Jadeja

    (School of Engineering and Technology, Central Queensland University, 120 Spencer Street, Melbourne, VIC 3000, Australia)

  • Arun Teja Doppalapudi

    (School of Engineering and Technology, Central Queensland University, 120 Spencer Street, Melbourne, VIC 3000, Australia)

  • Nur Md Sayeed Hassan

    (School of Engineering and Technology, Central Queensland University, Cairns, QLD 4870, Australia)

  • Md Nurun Nabi

    (School of Engineering and Technology, Central Queensland University, 120 Spencer Street, Melbourne, VIC 3000, Australia)

  • Roshan Rauniyar

    (School of Engineering and Technology, Central Queensland University, 120 Spencer Street, Melbourne, VIC 3000, Australia)

Abstract

The biodiesel production process is extensively studied in the literature, focusing on mechanisms, modeling, and economic aspects, yet plant design and fluid flow losses remain underexplored areas. The study addressed this gap by designing a biodiesel production plant, analyzing flow losses, and developing a pipe network and suitable pump models. In this study, an integration of biodiesel production plant design and simulation of continuous production of Calophyllum inophyllum biodiesel was investigated. Biodiesel production encompasses complex stages that involve systematic planning and system design. The goal of the plant design is to reduce the losses that occur during the conversion process, which can reduce the capital cost of the plant. A few assumptions were made when selecting biodiesel plant materials, such as pipes, pumps, fittings, and bends. These assumptions were based on considerations of the biodiesel fluid properties and pressure requirements. On the other hand, Aspen Plus was used to simulate the biodiesel production process. Calophyllum inophyllum was considered oil as the biodiesel feedstock and was inputted to the Aspen Plus as triglyceride composition. The simulation was carried out with rigorous kinetic reactions using the Non-Random Two-Liquid (NRTL) method to predict the liquid equilibrium in the reactor. Results revealed that the designed steel pipe meets safety requirements with a bursting pressure of 49.68MPa, capable of withstanding the maximum pressure of 4 bar and turbulent flow conditions. Additionally, the selected pump satisfies the required head and flow rate, ensuring efficient fluid movement. Moreover, simulation results closely matched experimental data, and 88% of biodiesel yield was recorded.

Suggested Citation

  • Abul Kalam Azad & Abhijaysinh Chandrasinh Jadeja & Arun Teja Doppalapudi & Nur Md Sayeed Hassan & Md Nurun Nabi & Roshan Rauniyar, 2024. "Design and Simulation of the Biodiesel Process Plant for Sustainable Fuel Production," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3291-:d:1375990
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suhaiza Zailani & Mohammad Iranmanesh & Sunghyup Sean Hyun & Mohd Helmi Ali, 2019. "Barriers of Biodiesel Adoption by Transportation Companies: A Case of Malaysian Transportation Industry," Sustainability, MDPI, vol. 11(3), pages 1-15, February.
    2. Glisic, Sandra B. & Pajnik, Jelena M. & Orlović, Aleksandar M., 2016. "Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production," Applied Energy, Elsevier, vol. 170(C), pages 176-185.
    3. Suman Dey & Akhilendra Pratap Singh & Sameer Sheshrao Gajghate & Sagnik Pal & Bidyut Baran Saha & Madhujit Deb & Pankaj Kumar Das, 2023. "Optimization of CI Engine Performance and Emissions Using Alcohol–Biodiesel Blends: A Regression Analysis Approach," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    4. Gulzar Ahmad & Shahid Imran & Muhammad Farooq & Asad Naeem Shah & Zahid Anwar & Ateekh Ur Rehman & Muhammad Imran, 2023. "Biodiesel Production from Waste Cooking Oil Using Extracted Catalyst from Plantain Banana Stem via RSM and ANN Optimization for Sustainable Development," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    5. Ibrahim M. Hezam & Naga Rama Devi Vedala & Bathina Rajesh Kumar & Arunodaya Raj Mishra & Fausto Cavallaro, 2023. "Assessment of Biofuel Industry Sustainability Factors Based on the Intuitionistic Fuzzy Symmetry Point of Criterion and Rank-Sum-Based MAIRCA Method," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsiotsias, Anastasios I. & Hafeez, Sanaa & Charisiou, Nikolaos D. & Al-Salem, Sultan M. & Manos, George & Constantinou, Achilleas & AlKhoori, Sara & Sebastian, Victor & Hinder, Steven J. & Baker, Mark, 2023. "Selective catalytic deoxygenation of palm oil to produce green diesel over Ni catalysts supported on ZrO2 and CeO2–ZrO2: Experimental and process simulation modelling studies," Renewable Energy, Elsevier, vol. 206(C), pages 582-596.
    2. Anas A. Makki & Reda M. S. Abdulaal, 2023. "A Hybrid MCDM Approach Based on Fuzzy MEREC-G and Fuzzy RATMI," Mathematics, MDPI, vol. 11(17), pages 1-19, September.
    3. Sakdasri, Winatta & Sawangkeaw, Ruengwit & Ngamprasertsith, Somkiat, 2018. "Techno-economic analysis of biodiesel production from palm oil with supercritical methanol at a low molar ratio," Energy, Elsevier, vol. 152(C), pages 144-153.
    4. Tran, Nghiep Nam & Tišma, Marina & Budžaki, Sandra & McMurchie, Edward J. & Gonzalez, Olivia Maria Morales & Hessel, Volker & Ngothai, Yung, 2018. "Scale-up and economic analysis of biodiesel production from recycled grease trap waste," Applied Energy, Elsevier, vol. 229(C), pages 142-150.
    5. Szulczyk, Kenneth R. & Badeeb, Ramez Abubakr, 2022. "Nontraditional sources for biodiesel production in Malaysia: The economic evaluation of hemp, jatropha, and kenaf biodiesel," Renewable Energy, Elsevier, vol. 192(C), pages 759-768.
    6. Janbarari, Seyed Reza & Ahmadian Behrooz, Hesam, 2020. "Optimal and robust synthesis of the biodiesel production process using waste cooking oil from different feedstocks," Energy, Elsevier, vol. 198(C).
    7. Mohd Helmi Ali & Suhaiza Zailani & Mohammad Iranmanesh & Behzad Foroughi, 2019. "Impacts of Environmental Factors on Waste, Energy, and Resource Management and Sustainable Performance," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    8. Đurišić-Mladenović, Nataša & Kiss, Ferenc & Škrbić, Biljana & Tomić, Milan & Mićić, Radoslav & Predojević, Zlatica, 2018. "Current state of the biodiesel production and the indigenous feedstock potential in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 280-291.
    9. Živković, Snežana B. & Veljković, Milan V. & Banković-Ilić, Ivana B. & Krstić, Ivan M. & Konstantinović, Sandra S. & Ilić, Slavica B. & Avramović, Jelena M. & Stamenković, Olivera S. & Veljković, Vlad, 2017. "Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 222-247.
    10. Yu Wei & Xiaohui Zhang & Shan Qing & Hua Wang, 2024. "Reaction Mechanism of Pyrolysis and Combustion of Methyl Oleate: A ReaxFF-MD Analysis," Energies, MDPI, vol. 17(14), pages 1-14, July.
    11. Shirazi, Yaser & Viamajala, Sridhar & Varanasi, Sasidhar, 2016. "High-yield production of fuel- and oleochemical-precursors from triacylglycerols in a novel continuous-flow pyrolysis reactor," Applied Energy, Elsevier, vol. 179(C), pages 755-764.
    12. Jugend, Daniel & Fiorini, Paula De Camargo & Armellini, Fabiano & Ferrari, Aline Gabriela, 2020. "Public support for innovation: A systematic review of the literature and implications for open innovation," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    13. Li, Yuping & Zhao, Cong & Chen, Lungang & Zhang, Xinghua & Zhang, Qi & Wang, Tiejun & Qiu, Songbai & Tan, Jin & Li, Kai & Wang, Chenguang & Ma, Longlong, 2018. "Production of bio-jet fuel from corncob by hydrothermal decomposition and catalytic hydrogenation: Lab analysis of process and techno-economics of a pilot-scale facility," Applied Energy, Elsevier, vol. 227(C), pages 128-136.
    14. Arumugam, A. & Ponnusami, V., 2019. "Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview," Renewable Energy, Elsevier, vol. 131(C), pages 459-471.
    15. Hsu, Keng-Hao & Wang, Wei-Cheng & Liu, Yu-Cheng, 2018. "Experimental studies and techno-economic analysis of hydro-processed renewable diesel production in Taiwan," Energy, Elsevier, vol. 164(C), pages 99-111.
    16. Ghazanfar Ali Abbasi & Noor Fareen Abdul Rahim & Hongyan Wu & Mohammad Iranmanesh & Benjamin Ng Chee Keong, 2022. "Determinants of SME’s Social Media Marketing Adoption: Competitive Industry as a Moderator," SAGE Open, , vol. 12(1), pages 21582440211, January.
    17. Tamás Mizik & Gábor Gyarmati, 2021. "Economic and Sustainability of Biodiesel Production—A Systematic Literature Review," Clean Technol., MDPI, vol. 3(1), pages 1-18, January.
    18. Barbosa, Ian V. & Scapim, Letícia A. & Cavalcante, Raquel M. & Young, André F., 2023. "Industrial production of green diesel in Brazil: Process simulation and economic perspectives," Renewable Energy, Elsevier, vol. 219(P2).
    19. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    20. George Petropoulos & John Zafeiropoulos & Eleana Kordouli & Alexis Lycourghiotis & Christos Kordulis & Kyriakos Bourikas, 2023. "Influence of Nickel Loading and the Synthesis Method on the Efficiency of Ni/TiO 2 Catalysts for Renewable Diesel Production," Energies, MDPI, vol. 16(11), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3291-:d:1375990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.