IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i6p2325-d1355187.html
   My bibliography  Save this article

The Economic Potential of Agrivoltaic Systems in Apple Cultivation—A Hungarian Case Study

Author

Listed:
  • Aidana Chalgynbayeva

    (Institute of Applied Economics, Faculty of Economics and Business, University of Debrecen, H-4032 Debrecen, Hungary)

  • Péter Balogh

    (Institute of Statistics and Methodology, Faculty of Economics and Business, University of Debrecen, H-4032 Debrecen, Hungary
    HUN-REN-DE High-Tech Technologies for Sustainable Management Research Group, University of Debrecen, Boszormenyi Street 138, H-4032 Debrecen, Hungary)

  • László Szőllősi

    (Institute of Economics, Faculty of Economics and Business, University of Debrecen, H-4032 Debrecen, Hungary)

  • Zoltán Gabnai

    (Institute of Applied Economics, Faculty of Economics and Business, University of Debrecen, H-4032 Debrecen, Hungary
    HUN-REN-DE High-Tech Technologies for Sustainable Management Research Group, University of Debrecen, Boszormenyi Street 138, H-4032 Debrecen, Hungary)

  • Ferenc Apáti

    (Institute of Horticulture, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary)

  • Marianna Sipos

    (Institute of Horticulture, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary)

  • Attila Bai

    (Institute of Applied Economics, Faculty of Economics and Business, University of Debrecen, H-4032 Debrecen, Hungary
    HUN-REN-DE High-Tech Technologies for Sustainable Management Research Group, University of Debrecen, Boszormenyi Street 138, H-4032 Debrecen, Hungary)

Abstract

Agrivoltaic systems (AVS) allow the simultaneous use of land—as a limited resource—for crop production and electricity generation. This paper introduces the development prospects of AVS in Hungary with insights into international trends. The most important part is a complex economic analysis and a unit cost analysis of a 38 MWp capacity AVS, considering the most typical basic data in electricity and apple production. The applied risk analysis is based on a Monte Carlo simulation, the distribution function, and probabilities. To introduce the economic facet of the competitiveness of AVS, a comparative analysis was carried out between AVS, ground-mounted photovoltaic (GM-PV) systems, and conventional apple production systems (ConAPS). In the most probable scenario, the AVS was financially attractive (NPV = 70 million EUR under 30 years). Our correlation analysis shows that feed-in tariff (FIT) price and the role of financing are considered the dominant economic factors. A favorable FIT price enhances the profitability of AVS; however, it makes GM-PV systems more profitable compared to AVS, so it negatively affects the competitiveness of AVS systems. AVS operations result in a more balanced unit cost of apples and of electricity compared to the independent operation of GM-PV systems and of ConAPS; in addition, it allows for land saving and more intensive land use.

Suggested Citation

  • Aidana Chalgynbayeva & Péter Balogh & László Szőllősi & Zoltán Gabnai & Ferenc Apáti & Marianna Sipos & Attila Bai, 2024. "The Economic Potential of Agrivoltaic Systems in Apple Cultivation—A Hungarian Case Study," Sustainability, MDPI, vol. 16(6), pages 1-34, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2325-:d:1355187
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/6/2325/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/6/2325/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valle, B. & Simonneau, T. & Sourd, F. & Pechier, P. & Hamard, P. & Frisson, T. & Ryckewaert, M. & Christophe, A., 2017. "Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops," Applied Energy, Elsevier, vol. 206(C), pages 1495-1507.
    2. Jiang, Shouzheng & Tang, Dahua & Zhao, Lu & Liang, Chuan & Cui, Ningbo & Gong, Daozhi & Wang, Yaosheng & Feng, Yu & Hu, Xiaotao & Peng, Yong, 2022. "Effects of different photovoltaic shading levels on kiwifruit growth, yield and water productivity under “agrivoltaic” system in Southwest China," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    4. Elamri, Y. & Cheviron, B. & Lopez, J.-M. & Dejean, C. & Belaud, G., 2018. "Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces," Agricultural Water Management, Elsevier, vol. 208(C), pages 440-453.
    5. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    6. Trommsdorff, Max & Hopf, Michaela & Hörnle, Oliver & Berwind, Matthew & Schindele, Stephan & Wydra, Kerstin, 2023. "Can synergies in agriculture through an integration of solar energy reduce the cost of agrivoltaics? An economic analysis in apple farming," Applied Energy, Elsevier, vol. 350(C).
    7. Bhattacharya, Suparna & Giannakas, Konstantinos & Schoengold, Karina, 2017. "Market and welfare effects of renewable portfolio standards in United States electricity markets," Energy Economics, Elsevier, vol. 64(C), pages 384-401.
    8. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
    9. Agostini, A. & Colauzzi, M. & Amaducci, S., 2021. "Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment," Applied Energy, Elsevier, vol. 281(C).
    10. Elkadeem, Mohamed R. & Zainali, Sebastian & Lu, Silvia Ma & Younes, Ali & Abido, Mohamed A. & Amaducci, Stefano & Croci, Michele & Zhang, Jie & Landelius, Tomas & Stridh, Bengt & Campana, Pietro Elia, 2024. "Agrivoltaic systems potentials in Sweden: A geospatial-assisted multi-criteria analysis," Applied Energy, Elsevier, vol. 356(C).
    11. Karakosta, Ourania & Petropoulou, Dimitra, 2022. "The EU electricity market: Renewables targets, Tradable Green Certificates and electricity trade," Energy Economics, Elsevier, vol. 111(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chopdar, R.K. & Sengar, N. & Giri, Nimay Chandra & Halliday, D., 2024. "Comprehensive review on agrivoltaics with technical, environmental and societal insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    2. Grazia Disciglio & Laura Frabboni & Annalisa Tarantino & Antonio Stasi, 2023. "Association between Dynamic Agrivoltaic System and Cultivation: Viability, Yields and Qualitative Assessment of Medical Plants," Sustainability, MDPI, vol. 15(23), pages 1-13, November.
    3. Edouard, Sylvain & Combes, Didier & Van Iseghem, Mike & Ng Wing Tin, Marion & Escobar-Gutiérrez, Abraham J., 2023. "Increasing land productivity with agriphotovoltaics: Application to an alfalfa field," Applied Energy, Elsevier, vol. 329(C).
    4. Cuppari, Rosa Isabella & Branscomb, Allan & Graham, Maggie & Negash, Fikeremariam & Smith, Angelique Kidd & Proctor, Kyle & Rupp, David & Tilahun Ayalew, Abiyou & Getaneh Tilaye, Gizaw & Higgins, Chad, 2024. "Agrivoltaics: Synergies and trade-offs in achieving the sustainable development goals at the global and local scale," Applied Energy, Elsevier, vol. 362(C).
    5. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Junedi, M.M. & Ludin, N.A. & Hamid, N.H. & Kathleen, P.R. & Hasila, J. & Ahmad Affandi, N.A., 2022. "Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Cuppari, Rosa I. & Higgins, Chad W. & Characklis, Gregory W., 2021. "Agrivoltaics and weather risk: A diversification strategy for landowners," Applied Energy, Elsevier, vol. 291(C).
    8. Trommsdorff, Max & Hopf, Michaela & Hörnle, Oliver & Berwind, Matthew & Schindele, Stephan & Wydra, Kerstin, 2023. "Can synergies in agriculture through an integration of solar energy reduce the cost of agrivoltaics? An economic analysis in apple farming," Applied Energy, Elsevier, vol. 350(C).
    9. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    10. Alexander V. Klokov & Egor Yu. Loktionov & Yuri V. Loktionov & Vladimir A. Panchenko & Elizaveta S. Sharaborova, 2023. "A Mini-Review of Current Activities and Future Trends in Agrivoltaics," Energies, MDPI, vol. 16(7), pages 1-18, March.
    11. Krexner, T. & Bauer, A. & Gronauer, A. & Mikovits, C. & Schmidt, J. & Kral, I., 2024. "Environmental life cycle assessment of a stilted and vertical bifacial crop-based agrivoltaic multi land-use system and comparison with a mono land-use of agricultural land," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    12. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    13. Widmer, J. & Christ, B. & Grenz, J. & Norgrove, L., 2024. "Agrivoltaics, a promising new tool for electricity and food production: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    14. Grubbs, E.K. & Gruss, S.M. & Schull, V.Z. & Gosney, M.J. & Mickelbart, M.V. & Brouder, S. & Gitau, M.W. & Bermel, P. & Tuinstra, M.R. & Agrawal, R., 2024. "Optimized agrivoltaic tracking for nearly-full commodity crop and energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    15. Casares de la Torre, F.J. & Varo, Marta & López-Luque, R. & Ramírez-Faz, J. & Fernández-Ahumada, L.M., 2022. "Design and analysis of a tracking / backtracking strategy for PV plants with horizontal trackers after their conversion to agrivoltaic plants," Renewable Energy, Elsevier, vol. 187(C), pages 537-550.
    16. Daisuke Yajima & Teruya Toyoda & Masaaki Kirimura & Kenji Araki & Yasuyuki Ota & Kensuke Nishioka, 2023. "Estimation Model of Agrivoltaic Systems Maximizing for Both Photovoltaic Electricity Generation and Agricultural Production," Energies, MDPI, vol. 16(7), pages 1-16, April.
    17. Ji, Zhengsen & Li, Wanying & Niu, Dongxiao, 2024. "Optimal investment decision of agrivoltaic coupling energy storage project based on distributed linguistic trust and hybrid evaluation method," Applied Energy, Elsevier, vol. 353(PA).
    18. Aidana Chalgynbayeva & Zoltán Gabnai & Péter Lengyel & Albiona Pestisha & Attila Bai, 2023. "Worldwide Research Trends in Agrivoltaic Systems—A Bibliometric Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    19. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    20. Jing, Rui & He, Yang & He, Jijiang & Liu, Yang & Yang, Shoubing, 2022. "Global sensitivity based prioritizing the parametric uncertainties in economic analysis when co-locating photovoltaic with agriculture and aquaculture in China," Renewable Energy, Elsevier, vol. 194(C), pages 1048-1059.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2325-:d:1355187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.