IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p2011-d1348546.html
   My bibliography  Save this article

Feasibility Analysis of Indirect Evaporative Cooling System Assisted by Liquid Desiccant for Data Centers in Hot-Humid Regions

Author

Listed:
  • Wenchao Shi

    (Renewable Energy Research Group (RERG), Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

  • Xiaochen Ma

    (Renewable Energy Research Group (RERG), Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

  • Yunran Min

    (College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China)

  • Hongxing Yang

    (Renewable Energy Research Group (RERG), Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

Abstract

The rapid development of data centers (DCs) has led to a marked increase in energy consumption in recent years, which poses a direct challenge to global efforts aimed at reducing carbon emissions. In regions with hot and humid climates, the energy demand is largely driven by air conditioning systems necessarily to maintain appropriate operational temperatures. This study proposes a novel multi-stage indirect evaporative cooling (IEC) system, incorporating a liquid desiccant in the primary air channel to address the cooling demands of such DCs. Our approach involves a two-stage process where the first stage uses a liquid desiccant-based IEC (LD-IEC) for air dehumidification and the second stage utilizes the treated air from the first stage as the secondary air to enhance the cooling effect. A simulation model of the proposed system is established with validation, and the performance of the multi-stage system was also discussed based on different operation modes. Furthermore, a case study was conducted to investigate the feasibility of using this system in the DC under a typical hot and humid zone. The findings reveal that the first-stage LD-IEC is capable of diminishing the wet-bulb temperature of the ambient air. Furthermore, the case study demonstrates that the proposed system can greatly improve the temperature drop by 72.7% compared to the single IEC, which noticeably reduces the operation time of energy-intensive supplementary cooling equipment from 5092 h to 31 h given the supply air temperature threshold of 25 °C. In summary, the proposed system could substantially decrease reliance on traditional cooling systems, which demonstrates a promising avenue to fully use this passive cooling technology for cooling DCs.

Suggested Citation

  • Wenchao Shi & Xiaochen Ma & Yunran Min & Hongxing Yang, 2024. "Feasibility Analysis of Indirect Evaporative Cooling System Assisted by Liquid Desiccant for Data Centers in Hot-Humid Regions," Sustainability, MDPI, vol. 16(5), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2011-:d:1348546
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/2011/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/2011/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Bin & Guo, Chunmei & Chen, Tong & Shi, Qi & Lv, Jian & You, Yuwen, 2019. "Development of an experimental validated model of cross-flow indirect evaporative cooler with condensation," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Ma, Xiaoli & Zeng, Cheng & Zhu, Zishang & Zhao, Xudong & Xiao, Xin & Akhlaghi, Yousef Golizadeh & Shittu, Samson, 2023. "Real life test of a novel super performance dew point cooling system in operational live data centre," Applied Energy, Elsevier, vol. 348(C).
    3. Kim, Hui-Jeong & Ham, Sang-Woo & Yoon, Dong-Seob & Jeong, Jae-Weon, 2017. "Cooling performance measurement of two cross-flow indirect evaporative coolers in general and regenerative operation modes," Applied Energy, Elsevier, vol. 195(C), pages 268-277.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min, Yunran & Chen, Yi & Shi, Wenchao & Yang, Hongxing, 2021. "Applicability of indirect evaporative cooler for energy recovery in hot and humid areas: Comparison with heat recovery wheel," Applied Energy, Elsevier, vol. 287(C).
    2. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Ma, Xiaochen & Shi, Wenchao & Yang, Hongxing, 2022. "Study on water spraying distribution to improve the energy recovery performance of indirect evaporative coolers with nozzle arrangement optimization," Applied Energy, Elsevier, vol. 318(C).
    4. Park, Joon-Young & Kim, Beom-Jun & Yoon, Soo-Yeol & Byon, Yoo-Suk & Jeong, Jae-Weon, 2019. "Experimental analysis of dehumidification performance of an evaporative cooling-assisted internally cooled liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 235(C), pages 177-185.
    5. Oh, Seung Jin & Shahzad, Muhammad Wakil & Burhan, Muhammad & Chun, Wongee & Kian Jon, Chua & KumJa, M. & Ng, Kim Choon, 2019. "Approaches to energy efficiency in air conditioning: A comparative study on purge configurations for indirect evaporative cooling," Energy, Elsevier, vol. 168(C), pages 505-515.
    6. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Livas-García, A. & Xamán, J. & Bassam, A. & Maisotsenko, Valeriy, 2021. "Projecting global water footprints diminution of a dew-point cooling system: Sustainability approach assisted with energetic and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    7. Sadighi Dizaji, Hamed & Hu, Eric Jing & Chen, Lei & Pourhedayat, Samira, 2018. "Development and validation of an analytical model for perforated (multi-stage) regenerative M-cycle air cooler," Applied Energy, Elsevier, vol. 228(C), pages 2176-2194.
    8. Qian Chen & Muhammad Burhan & M Kum Ja & Muhammad Wakil Shahzad & Doskhan Ybyraiymkul & Hongfei Zheng & Xin Cui & Kim Choon Ng, 2022. "Hybrid Indirect Evaporative Cooling-Mechanical Vapor Compression System: A Mini-Review," Energies, MDPI, vol. 15(20), pages 1-17, October.
    9. Lin, Jie & Bui, Duc Thuan & Wang, Ruzhu & Chua, Kian Jon, 2018. "On the fundamental heat and mass transfer analysis of the counter-flow dew point evaporative cooler," Applied Energy, Elsevier, vol. 217(C), pages 126-142.
    10. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Xamán, J. & Bassam, A., 2018. "An innovative air saturator for humidification-dehumidification desalination application," Applied Energy, Elsevier, vol. 228(C), pages 789-807.
    11. Cui, Xin & Yan, Weichao & Liu, Yilin & Zhao, Min & Jin, Liwen, 2020. "Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling," Applied Energy, Elsevier, vol. 271(C).
    12. Sadighi Dizaji, Hamed & Hu, Eric Jing & Chen, Lei & Pourhedayat, Samira, 2020. "Analytical/experimental sensitivity study of key design and operational parameters of perforated Maisotsenko cooler based on novel wet-surface theory," Applied Energy, Elsevier, vol. 262(C).
    13. Shi, Wenchao & Min, Yunran & Ma, Xiaochen & Chen, Yi & Yang, Hongxing, 2022. "Dynamic performance evaluation of porous indirect evaporative cooling system with intermittent spraying strategies," Applied Energy, Elsevier, vol. 311(C).
    14. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Liu, Yilin & An, Hui & Jin, Liwen, 2023. "Effects of membrane characteristics on the evaporative cooling performance for hollow fiber membrane modules," Energy, Elsevier, vol. 270(C).
    15. Chunmei Guo & Yu Li & Xianli Li & Ruxue Bai & Chuanshuai Dong, 2023. "Design Selection Method of Exhaust Air Heat Recovery Type Indirect Evaporative Cooler," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    16. Fang, Ranran & Luo, Chongfu & Pan, Zhonglin & Li, Junchang & Xu, Fulei & Zheng, Jiangen & Mao, Xuefeng & Wang, Xiaofa & Li, Rui & Wei, Yongbin & Chen, Yijing & Vorobyev, Anatoliy Y., 2024. "Efficient harvesting of renewable evaporative energy from atmospheric air through hierarchical nano/microscale shaping of air-water interface," Applied Energy, Elsevier, vol. 358(C).
    17. Zheng, Bin & Guo, Chunmei & Chen, Tong & Shi, Qi & Lv, Jian & You, Yuwen, 2019. "Development of an experimental validated model of cross-flow indirect evaporative cooler with condensation," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Wu, Zhiyong & Lu, Zhibin & Zhang, Bingjian & He, Chang & Chen, Qinglin & Yu, Haoshui & Ren, Jingzheng, 2022. "Stochastic bi-objective optimization for closed wet cooling tower systems based on a simplified analytical model," Energy, Elsevier, vol. 250(C).
    19. Zhou, Yuanyuan & Zhang, Tao & Wang, Fang & Yu, Yanshun, 2018. "Performance analysis of a novel thermoelectric assisted indirect evaporative cooling system," Energy, Elsevier, vol. 162(C), pages 299-308.
    20. Yugang Wang & Xiang Huang & Li Li, 2018. "Comparative Study of the Cross-Flow Heat and Mass Exchangers for Indirect Evaporative Cooling Using Numerical Methods," Energies, MDPI, vol. 11(12), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2011-:d:1348546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.