IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1664-d1340634.html
   My bibliography  Save this article

Study of the Energy Efficiency of Compressed Air Storage Tanks

Author

Listed:
  • Ryszard Dindorf

    (Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland)

Abstract

This study focusses on the energy efficiency of compressed air storage tanks (CASTs), which are used as small-scale compressed air energy storage (CAES) and renewable energy sources (RES). The objectives of this study are to develop a mathematical model of the CAST system and its original numerical solutions using experimental parameters that consider polytropic charging and discharging processes, changes in the time of the temperature, flow parameters of the inlet and outlet valves under choked and subsonic conditions, and the characteristics of the air motor. This model is used to select CAST as an energy storage system for compressed air generated by compressors and recycling, as well as an energy source to drive DC generators and a pneumatic propulsion system (PPS). A measuring test rig is built to verify the polytropic pressure and temperature variations during CAST charging and discharging obtained from numerical solutions. The topic of discussion is the functional model of a high-pressure air system (HPAS) that contains a CAST connected to an air motor coupled to a mechanical drive for a DC generator or PPS. Such a system is used in small-scale CASTs, which currently respond to socio-economic demands. The presented CAST energy efficiency indicators are used to justify the storage of compressed air energy on a small scale. Small-scale compressed air storage in CASTs is currently important and relevant due to the balance between peak electricity demand and the development of wind energy, photovoltaics, and other renewable energy sources.

Suggested Citation

  • Ryszard Dindorf, 2024. "Study of the Energy Efficiency of Compressed Air Storage Tanks," Sustainability, MDPI, vol. 16(4), pages 1-37, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1664-:d:1340634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayah Marwan Rabi & Jovana Radulovic & James M. Buick, 2023. "Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies," Energies, MDPI, vol. 16(17), pages 1-19, August.
    2. Leszczynski, J.S. & Grybos, D., 2019. "Compensation for the complexity and over-scaling in industrial pneumatic systems by the accumulation and reuse of exhaust air," Applied Energy, Elsevier, vol. 239(C), pages 1130-1141.
    3. Qihui Yu & Jianwei Zhai & Qiancheng Wang & Xuxiao Zhang & Xin Tan, 2021. "Experimental Study of a New Pneumatic Actuating System Using Exhaust Recycling," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    4. Ryszard Dindorf & Jakub Takosoglu & Piotr Wos, 2023. "Review of Compressed Air Receiver Tanks for Improved Energy Efficiency of Various Pneumatic Systems," Energies, MDPI, vol. 16(10), pages 1-37, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominik Gryboś & Jacek S. Leszczyński, 2024. "A Review of Energy Overconsumption Reduction Methods in the Utilization Stage in Compressed Air Systems," Energies, MDPI, vol. 17(6), pages 1-22, March.
    2. Jan Markowski & Dominik Gryboś & Jacek Leszczyński & Yohiside Suwa, 2023. "Exhaust Air Recovery System from the Utilisation Stage of Pneumatic System in Double Transmission Double Expansion Approach," Energies, MDPI, vol. 16(23), pages 1-14, November.
    3. Ryszard Dindorf & Jakub Takosoglu & Piotr Wos, 2023. "Review of Compressed Air Receiver Tanks for Improved Energy Efficiency of Various Pneumatic Systems," Energies, MDPI, vol. 16(10), pages 1-37, May.
    4. Luca Cacciali & Lorenzo Battisti & Davide Occello, 2023. "Efficiency-Driven Iterative Model for Underwater Compressed Air Energy Storage (UW-CAES)," Energies, MDPI, vol. 16(24), pages 1-17, December.
    5. Jacek Leszczyński & Jan Markowski & Dominik Gryboś & Yoshihide Suwa, 2023. "Sensitivity Analysis of the Complex Dynamics of an Expansion Process in Low-Pressure Compressed Air for an Electrical Energy Storage System," Energies, MDPI, vol. 16(5), pages 1-10, February.
    6. Hongwang Du & Wei Liu & Xin Bian & Wei Xiong, 2022. "Energy-Saving for Industrial Pneumatic Actuation Systems by Exhausted Air Reuse Based on a Constant Pressure Elastic Accumulator," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
    7. Dominik Gryboś & Jacek S. Leszczyński & Dorota Czopek & Jerzy Wiciak, 2021. "Exhaust Noise Reduction by Application of Expanded Collecting System in Pneumatic Tools and Machines," Energies, MDPI, vol. 14(6), pages 1-17, March.
    8. Leszczynski, J.S. & Grybos, D., 2020. "Sensitivity analysis of Double Transmission Double Expansion (DTDE) systems for assessment of the environmental impact of recovering energy waste in exhaust air from compressed air systems," Applied Energy, Elsevier, vol. 278(C).
    9. Muhsin Kılıç & Ayse Fidan Altun, 2023. "Comprehensive Thermodynamic Performance Evaluation of Various Gas Liquefaction Cycles for Cryogenic Energy Storage," Sustainability, MDPI, vol. 15(24), pages 1-25, December.
    10. Zecheng Zhao & Zhiwen Wang & Hu Wang & Hongwei Zhu & Wei Xiong, 2023. "Conventional and Advanced Exergy Analyses of Industrial Pneumatic Systems," Energies, MDPI, vol. 16(16), pages 1-23, August.
    11. Czopek, Dorota & Gryboś, Dominik & Leszczyński, Jacek & Wiciak, Jerzy, 2022. "Identification of energy wastes through sound analysis in compressed air systems," Energy, Elsevier, vol. 239(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1664-:d:1340634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.