IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8013-d1298130.html
   My bibliography  Save this article

Efficiency-Driven Iterative Model for Underwater Compressed Air Energy Storage (UW-CAES)

Author

Listed:
  • Luca Cacciali

    (Fluid Machinery Laboratory, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

  • Lorenzo Battisti

    (Fluid Machinery Laboratory, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

  • Davide Occello

    (Fluid Machinery Laboratory, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

Abstract

The competitiveness of large-scale offshore wind parks is influenced by the intermittent power generation of wind turbines, which impacts network service costs such as reserve requirements, capacity credit, and system inertia. Buffer power plants smooth the peaks in power generation, distribute electric power when the wind is absent or insufficient, and improve the capacity factor of wind parks and their profitability. By substituting the variable pressure storage with an underwater variable volume air reservoir and reducing the wastage of compression heat using liquid Thermal Energy Storage (TES), which eliminates the combustor, the plant design allows overcoming the most common drawbacks of CAES plants. Underwater Compressed Air Energy Storage (UW-CAES) plants are investigated with a thermodynamic model to drive the power plant design toward efficiency maximization. Functional maps, constrained on the plant pressure ratio and the number of compressor/turbine phases with inter-refrigerated/inter-heating phases, are drawn by solving the model iteratively for the heat exchangers’ effectiveness to meet the target turbine discharge temperature, selected in advance to avoid unfeasible mathematical solutions.

Suggested Citation

  • Luca Cacciali & Lorenzo Battisti & Davide Occello, 2023. "Efficiency-Driven Iterative Model for Underwater Compressed Air Energy Storage (UW-CAES)," Energies, MDPI, vol. 16(24), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8013-:d:1298130
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayah Marwan Rabi & Jovana Radulovic & James M. Buick, 2023. "Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies," Energies, MDPI, vol. 16(17), pages 1-19, August.
    2. Bouman, Evert A. & Øberg, Martha M. & Hertwich, Edgar G., 2016. "Environmental impacts of balancing offshore wind power with compressed air energy storage (CAES)," Energy, Elsevier, vol. 95(C), pages 91-98.
    3. Cavallo, Alfred, 2007. "Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)," Energy, Elsevier, vol. 32(2), pages 120-127.
    4. Pimm, Andrew J. & Garvey, Seamus D. & de Jong, Maxim, 2014. "Design and testing of Energy Bags for underwater compressed air energy storage," Energy, Elsevier, vol. 66(C), pages 496-508.
    5. Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
    6. Julian David Hunt & Behnam Zakeri & Andreas Nascimento & Diego Augusto de Jesus Pacheco & Epari Ritesh Patro & Bojan Đurin & Márcio Giannini Pereira & Walter Leal Filho & Yoshihide Wada, 2023. "Isothermal Deep Ocean Compressed Air Energy Storage: An Affordable Solution for Seasonal Energy Storage," Energies, MDPI, vol. 16(7), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    2. Barah Ahn & Macey Schmetzer & Paul I. Ro, 2025. "Comparative Study of Solid-Based and Liquid-Based Heat Transfer Enhancement Techniques in Liquid Piston Gas Compression," Energies, MDPI, vol. 18(8), pages 1-20, April.
    3. Fan, Jinyang & Liu, Wei & Jiang, Deyi & Chen, Junchao & Ngaha Tiedeu, William & Chen, Jie & JJK, Deaman, 2018. "Thermodynamic and applicability analysis of a hybrid CAES system using abandoned coal mine in China," Energy, Elsevier, vol. 157(C), pages 31-44.
    4. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    5. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    6. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    7. He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2018. "Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system," Energy, Elsevier, vol. 165(PB), pages 349-359.
    8. Daniel Pottie & Bruno Cardenas & Seamus Garvey & James Rouse & Edward Hough & Audrius Bagdanavicius & Edward Barbour, 2023. "Comparative Analysis of Isochoric and Isobaric Adiabatic Compressed Air Energy Storage," Energies, MDPI, vol. 16(6), pages 1-18, March.
    9. Sarmast, Sepideh & Rouindej, Kamyar & Fraser, Roydon A. & Dusseault, Maurice B., 2024. "Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems: Sizing and design considerations," Applied Energy, Elsevier, vol. 357(C).
    10. Wang, Peizi & Zhao, Pan & Wang, Jiangfeng & Dai, Yiping, 2020. "Performance evaluation of a combined heat and compressed air energy storage system integrated with ORC for scaling up storage capacity purpose," Energy, Elsevier, vol. 190(C).
    11. Marcin Jankowski & Anna Pałac & Krzysztof Sornek & Wojciech Goryl & Maciej Żołądek & Maksymilian Homa & Mariusz Filipowicz, 2024. "Status and Development Perspectives of the Compressed Air Energy Storage (CAES) Technologies—A Literature Review," Energies, MDPI, vol. 17(9), pages 1-46, April.
    12. Qing, Shaowei & Ren, Shangkun & Wang, Yan & Wen, Xiankui & Zhong, Jingliang & Tang, Shengli & Peng, E., 2024. "Compressed air energy storage system with an ejector integrated in energy-release stage: Where is the optimal location of constant-pressure operation?," Applied Energy, Elsevier, vol. 375(C).
    13. Julian David Hunt & Andreas Nascimento & Oldrich Joel Romero & Behnam Zakeri & Jakub Jurasz & Paweł B. Dąbek & Tomasz Strzyżewski & Bojan Đurin & Walter Leal Filho & Marcos Aurélio Vasconcelos Freitas, 2024. "Hydrogen storage with gravel and pipes in lakes and reservoirs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Lawrie Swinfen-Styles & Seamus D. Garvey & Donald Giddings & Bruno Cárdenas & James P. Rouse, 2022. "Analysis of a Wind-Driven Air Compression System Utilising Underwater Compressed Air Energy Storage," Energies, MDPI, vol. 15(6), pages 1-28, March.
    15. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
    16. Pandžić, Hrvoje & Kuzle, Igor & Capuder, Tomislav, 2013. "Virtual power plant mid-term dispatch optimization," Applied Energy, Elsevier, vol. 101(C), pages 134-141.
    17. Houssainy, Sammy & Janbozorgi, Mohammad & Ip, Peggy & Kavehpour, Pirouz, 2018. "Thermodynamic analysis of a high temperature hybrid compressed air energy storage (HTH-CAES) system," Renewable Energy, Elsevier, vol. 115(C), pages 1043-1054.
    18. Muhsin Kılıç & Ayse Fidan Altun, 2023. "Comprehensive Thermodynamic Performance Evaluation of Various Gas Liquefaction Cycles for Cryogenic Energy Storage," Sustainability, MDPI, vol. 15(24), pages 1-25, December.
    19. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    20. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8013-:d:1298130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.