IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1406-d1335209.html
   My bibliography  Save this article

Estimation and Differential Analysis of the Carbon Sink Service Radius of Urban Green Spaces in the Beijing Plain Area

Author

Listed:
  • Shurui Gao

    (School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China)

  • Peiyuan Tao

    (School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China)

  • Zhiming Zhao

    (School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China)

  • Xinyue Dong

    (School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China)

  • Jiayan Li

    (School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China)

  • Peng Yao

    (School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China)

Abstract

Enhancing the carbon sink capacity of urban green spaces is considered an effective means of reducing carbon dioxide concentration. This study, employing xCO 2 as a key indicator and utilizing buffer analysis, estimated the carbon sink service radius of urban green spaces. Using spatial zoning and multifactor analysis, this research statistically analyzed 15 indicators, exploring the differences in carbon sink service radius from both the dimensions of urban green spaces and urban zones. The findings indicate that the carbon sink service radius is a result of the combined effect of urban green spaces and adjacent urban areas. Urban green space area, the NPP (net primary productivity) of urban zones, forest proportion, and grassland proportion are positively correlated with the carbon sink service radius, and the correlation degree is 0.12, 0.095, 0.121, and 0.125, respectively. The proportion of grassland and the proportion of impervious area in the city have a significant negative correlation with the carbon sink service radius, and the correlation degree is −0.074 and −0.081, respectively. This research holds significant implications for enhancing the carbon sink capacity of urban green spaces, adjusting land use patterns, and promoting the sustainable development of cities.

Suggested Citation

  • Shurui Gao & Peiyuan Tao & Zhiming Zhao & Xinyue Dong & Jiayan Li & Peng Yao, 2024. "Estimation and Differential Analysis of the Carbon Sink Service Radius of Urban Green Spaces in the Beijing Plain Area," Sustainability, MDPI, vol. 16(4), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1406-:d:1335209
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1406/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1406/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Jincai & Ji, Guangxing & Yue, YanLin & Lai, Zhizhu & Chen, Yulong & Yang, Dongyang & Yang, Xu & Wang, Zheng, 2019. "Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets," Applied Energy, Elsevier, vol. 235(C), pages 612-624.
    2. Ren, Fang-rong & Tian, Ze & Liu, Jingjing & Shen, Yu-ting, 2020. "Analysis of CO2 emission reduction contribution and efficiency of China’s solar photovoltaic industry: Based on Input-output perspective," Energy, Elsevier, vol. 199(C).
    3. Peiyuan Tao & Ye Lin & Xing Wang & Jiayan Li & Chao Ma & Zhenkun Wang & Xinyue Dong & Peng Yao & Ming Shao, 2023. "Optimization of Green Spaces in Plain Urban Areas to Enhance Carbon Sequestration," Land, MDPI, vol. 12(6), pages 1-25, June.
    4. Lige Xu & Kailun Fang & Yu Huang & Shuangyu Xu, 2023. "Demand Priority of Green Space from the Perspective of Carbon Emissions and Storage," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Xiong & Yiyan Sun & Yunfeng Yang, 2025. "Impact of Urban Green Space Patterns on Carbon Emissions: A Gray BP Neural Network and Geo-Detector Analysis," Sustainability, MDPI, vol. 17(16), pages 1-34, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    2. Xinyu Zhang & Mufei Shen & Yupeng Luan & Weijia Cui & Xueqin Lin, 2022. "Spatial Evolutionary Characteristics and Influencing Factors of Urban Industrial Carbon Emission in China," IJERPH, MDPI, vol. 19(18), pages 1-21, September.
    3. Yongxing Li & Wei Guo & Peixian Li & Xuesheng Zhao & Jinke Liu, 2023. "Exploring the Spatiotemporal Dynamics of CO 2 Emissions through a Combination of Nighttime Light and MODIS NDVI Data," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
    4. Chen, Feng & Wu, Bin & Lou, Wenqian, 2021. "An evolutionary analysis on the effect of government policies on green R & D of photovoltaic industry diffusion in complex network," Energy Policy, Elsevier, vol. 152(C).
    5. Nakamoto, Yuya & Eguchi, Shogo, 2024. "How do seasonal and technical factors affect generation efficiency of photovoltaic power plants?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Siting Hong & Ting Fu & Ming Dai, 2025. "Machine Learning-Based Carbon Emission Predictions and Customized Reduction Strategies for 30 Chinese Provinces," Sustainability, MDPI, vol. 17(5), pages 1-29, February.
    7. Juchao Zhao & Shaohua Zhang & Kun Yang & Yanhui Zhu & Yuling Ma, 2020. "Spatio-Temporal Variations of CO 2 Emission from Energy Consumption in the Yangtze River Delta Region of China and Its Relationship with Nighttime Land Surface Temperature," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    8. Qingwei Shi & Jingxin Gao & Xia Wang & Hong Ren & Weiguang Cai & Haifeng Wei, 2020. "Temporal and Spatial Variability of Carbon Emission Intensity of Urban Residential Buildings: Testing the Effect of Economics and Geographic Location in China," Sustainability, MDPI, vol. 12(7), pages 1-23, March.
    9. Hu, Ting & Huang, Xin, 2019. "A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 240(C), pages 778-792.
    10. He, Weimin & Wang, Bin, 2024. "Environmental jurisdiction and energy efficiency: Evidence from China's establishment of environmental courts," Energy Economics, Elsevier, vol. 131(C).
    11. Lina Liu & Jiansheng Qu & Tek Narayan Maraseni & Yibo Niu & Jingjing Zeng & Lihua Zhang & Li Xu, 2020. "Household CO 2 Emissions: Current Status and Future Perspectives," IJERPH, MDPI, vol. 17(19), pages 1-19, September.
    12. Ran Guo & Hong Leng & Qing Yuan & Shiyi Song, 2022. "Impact of Urban Form on CO 2 Emissions under Different Socioeconomic Factors: Evidence from 132 Small and Medium-Sized Cities in China," Land, MDPI, vol. 11(5), pages 1-20, May.
    13. Jawaher Binsuwadan, 2024. "Transport Sector Emissions and Environmental Sustainability: Empirical Evidence from GCC Economies," Sustainability, MDPI, vol. 16(23), pages 1-17, December.
    14. Kuşkaya, Sevda, 2022. "Residential solar energy consumption and greenhouse gas nexus: Evidence from Morlet wavelet transforms," Renewable Energy, Elsevier, vol. 192(C), pages 793-804.
    15. Guihong Yang & Xuxi Wang & Li Peng & Xinyue Zhang, 2024. "Dynamic Interactions of Urban Land Use Efficiency, Industrial Structure, and Carbon Emissions Intensity in Chinese Cities: A Panel Vector Autoregression (PVAR) Approach," Land, MDPI, vol. 14(1), pages 1-22, December.
    16. Guo, Xiaopeng & Dong, Yining & Ren, Dongfang, 2023. "CO2 emission reduction effect of photovoltaic industry through 2060 in China," Energy, Elsevier, vol. 269(C).
    17. Wen, Le & Suomalainen, Kiti & Sharp, Basil & Yi, Ming & Sheng, Mingyue Selena, 2022. "Impact of wind-hydro dynamics on electricity price: A seasonal spatial econometric analysis," Energy, Elsevier, vol. 238(PC).
    18. Zheng Wang & Shaojian Wang & Chuanhao Lu & Lei Hu, 2022. "Which Factors Influence the Regional Difference of Urban–Rural Residential CO 2 Emissions? A Case Study by Cross-Regional Panel Analysis in China," Land, MDPI, vol. 11(5), pages 1-19, April.
    19. Hui Wang & Guifen Liu & Kaifang Shi, 2019. "What Are the Driving Forces of Urban CO 2 Emissions in China? A Refined Scale Analysis between National and Urban Agglomeration Levels," IJERPH, MDPI, vol. 16(19), pages 1-19, September.
    20. Hongzhi Meng & Xiaoke Zhang & Xindong Du & Kaiyuan Du, 2023. "Spatiotemporal Heterogeneity of the Characteristics and Influencing Factors of Energy-Consumption-Related Carbon Emissions in Jiangsu Province Based on DMSP-OLS and NPP-VIIRS," Land, MDPI, vol. 12(7), pages 1-17, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1406-:d:1335209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.