IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p10798-d1540181.html
   My bibliography  Save this article

The Analysis and Validation of the Measured Heating Energy Consumption of a Single-Family Residential Passive House in Lithuania

Author

Listed:
  • Rimvydas Adomaitis

    (Lithuanian Energy Institute, LT-44403 Kaunas, Lithuania)

  • Kęstutis Valančius

    (Department of Building Energetics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania)

  • Giedrė Streckienė

    (Department of Building Energetics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania)

Abstract

To build a sustainable building, we need to assess a range of sustainability aspects and design them correctly, which is why building performance simulation (BPS) at an early stage of project development is critical and relevant for many professionals. This paper presents an extended analysis of the monitoring results of the first single-family Passive House (LT-PH3) in Vilnius, Lithuania, certified by the German Passive House Institute in 2015 for 2016–2020. It was based on measured data on heat pump electricity consumption and outdoor and indoor air temperature. This study evaluated the seasonal performance (SCOP) of the heat pump using the Passive House Design Package 8.5 (PHPP 8.5) and Aquarea Designer Online Simulation Software Tool 2013 (Aquarea 2013) and compared the performance of the building with the PHPP 8.5 designed in 2013 and Swegon ESBO Light 2.4.0.3 (Swegon 2.4.0.3), Aquarea 2013, and the results obtained using the Lithuanian National Building Energy Performance Certification Programme NRGsert edition 3 (NRGsert 3). The analysis showed that the heat consumption of the building modelled during the design process is close to the operational heat consumption, which increases the confidence in the BPS modelling software, the modelling process itself, and the results.

Suggested Citation

  • Rimvydas Adomaitis & Kęstutis Valančius & Giedrė Streckienė, 2024. "The Analysis and Validation of the Measured Heating Energy Consumption of a Single-Family Residential Passive House in Lithuania," Sustainability, MDPI, vol. 16(24), pages 1-25, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:10798-:d:1540181
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/10798/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/10798/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    2. Maria-Mar Fernandez-Antolin & José Manuel del Río & Vincenzo Costanzo & Francesco Nocera & Roberto-Alonso Gonzalez-Lezcano, 2019. "Passive Design Strategies for Residential Buildings in Different Spanish Climate Zones," Sustainability, MDPI, vol. 11(18), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Yuang Guo & Dewancker Bart, 2020. "Optimization of Design Parameters for Office Buildings with Climatic Adaptability Based on Energy Demand and Thermal Comfort," Sustainability, MDPI, vol. 12(9), pages 1-23, April.
    3. Szymon Firląg & Abdullah Sikander Baig & Dariusz Koc, 2025. "Historical Analysis of Real Energy Consumption and Indoor Conditions in Single-Family Passive Building," Sustainability, MDPI, vol. 17(2), pages 1-35, January.
    4. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    5. Buyak, Nadia & Deshko, Valeriy & Bilous, Inna & Pavlenko, Anatoliy & Sapunov, Anatoliy & Biriukov, Dmytro, 2023. "Dynamic interdependence of comfortable thermal conditions and energy efficiency increase in a nursery school building for heating and cooling period," Energy, Elsevier, vol. 283(C).
    6. Qu, Ke & Chen, Xiangjie & Wang, Yixin & Calautit, John & Riffat, Saffa & Cui, Xin, 2021. "Comprehensive energy, economic and thermal comfort assessments for the passive energy retrofit of historical buildings - A case study of a late nineteenth-century Victorian house renovation in the UK," Energy, Elsevier, vol. 220(C).
    7. Kosara Kujundzic & Slavica Stamatovic Vuckovic & Ana Radivojević, 2023. "Toward Regenerative Sustainability: A Passive Design Comfort Assessment Method of Indoor Environment," Sustainability, MDPI, vol. 15(1), pages 1-33, January.
    8. Maria-Mar Fernandez-Antolin & José-Manuel del-Río & Fernando del Ama Gonzalo & Roberto-Alonso Gonzalez-Lezcano, 2020. "The Relationship between the Use of Building Performance Simulation Tools by Recent Graduate Architects and the Deficiencies in Architectural Education," Energies, MDPI, vol. 13(5), pages 1-20, March.
    9. Helena Monteiro & Fausto Freire & John E. Fernández, 2020. "Life-Cycle Assessment of Alternative Envelope Construction for a New House in South-Western Europe: Embodied and Operational Magnitude," Energies, MDPI, vol. 13(16), pages 1-20, August.
    10. Valeria Palomba & Emiliano Borri & Antonios Charalampidis & Andrea Frazzica & Sotirios Karellas & Luisa F. Cabeza, 2021. "An Innovative Solar-Biomass Energy System to Increase the Share of Renewables in Office Buildings," Energies, MDPI, vol. 14(4), pages 1-25, February.
    11. Giada Giuffrida & Maurizio Detommaso & Francesco Nocera & Rosa Caponetto, 2021. "Design Optimisation Strategies for Solid Rammed Earth Walls in Mediterranean Climates," Energies, MDPI, vol. 14(2), pages 1-23, January.
    12. Halhoul Merabet, Ghezlane & Essaaidi, Mohamed & Ben Haddou, Mohamed & Qolomany, Basheer & Qadir, Junaid & Anan, Muhammad & Al-Fuqaha, Ala & Abid, Mohamed Riduan & Benhaddou, Driss, 2021. "Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Ran Wang & Zijian He & Xue Zhai & Shilei Lu, 2024. "Application and Performance Evaluation of Key Technologies in Green Buildings," Energies, MDPI, vol. 17(24), pages 1-23, December.
    14. Ramkishore Singh & Dharam Buddhi & Samar Thapa & Chander Prakash & Rajesh Singh & Atul Sharma & Shane Sheoran & Kuldeep Kumar Saxena, 2022. "Sensitivity Analysis for Decisive Design Parameters for Energy and Indoor Visual Performances of a Glazed Façade Office Building," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    15. Bin Huang & Ke Xing & Stephen Pullen & Lida Liao, 2020. "Exploring Carbon Neutral Potential in Urban Densification: A Precinct Perspective and Scenario Analysis," Sustainability, MDPI, vol. 12(12), pages 1-19, June.
    16. María Jesús Montero Burgos & Hipólito Sanchiz Álvarez de Toledo & Roberto Alonso González Lezcano & Antonio Galán de Mera, 2020. "The Sedentary Process and the Evolution of Energy Consumption in Eight Native American Dwellings: Analyzing Sustainability in Traditional Architecture," Sustainability, MDPI, vol. 12(5), pages 1-28, February.
    17. Jozef Švajlenka & Mária Kozlovská & František Vranay & Terézia Pošiváková & Miroslava Jámborová, 2020. "Comparison of Laboratory and Computational Models of Selected Thermal-Technical Properties of Constructions Systems Based on Wood," Energies, MDPI, vol. 13(12), pages 1-15, June.
    18. de Araujo Passos, Luigi Antonio & Ceha, Thomas Joseph & Baldi, Simone & De Schutter, Bart, 2023. "Model predictive control of a thermal chimney and dynamic solar shades for an all-glass facades building," Energy, Elsevier, vol. 264(C).
    19. Jozef Švajlenka & Mária Kozlovská & Miroslav Badida & Marek Moravec & Tibor Dzuro & František Vranay, 2020. "Analysis of the Characteristics of External Walls of Wooden Prefab Cross Laminated Timber," Energies, MDPI, vol. 13(22), pages 1-14, November.
    20. Yizhe Xu & Chengchu Yan & Hao Qian & Liang Sun & Gang Wang & Yanlong Jiang, 2021. "A Novel Optimization Method for Conventional Primary and Secondary School Classrooms in Southern China Considering Energy Demand, Thermal Comfort and Daylighting," Sustainability, MDPI, vol. 13(23), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:10798-:d:1540181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.