IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i16p7541-d1729119.html
   My bibliography  Save this article

Morphological Optimization of Low-Density Commercial Streets: A Multi-Objective Study Based on Genetic Algorithm

Author

Listed:
  • Hongchi Zhang

    (School of Architecture and Fine Art, Dalian University of Technology, Dalian 116023, China)

  • Liangshan You

    (School of Architecture and Fine Art, Dalian University of Technology, Dalian 116023, China)

  • Hong Yuan

    (College of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China)

  • Fei Guo

    (School of Architecture and Fine Art, Dalian University of Technology, Dalian 116023, China)

Abstract

Through their open space layout, rich green configuration and low floor area ratio (FAR), low-density commercial blocks show significant advantages in creating high-quality outdoor thermal comfort (Universal Thermal Climate Index, UTCI) environment, reducing regional energy consumption load (building energy consumption, BEC) potential, providing pleasant public space experience and enhancing environmental resilience, which are different from traditional high-density business models. This study proposes a workflow for morphological design of low-density commercial blocks based on parametric modeling via the Grasshopper platform and the NSGA-II algorithm, which aims to balance environmental benefits (UTCI, BEC) and spatial efficiency (FAR). This study employs EnergyPlus, Wallacei and other relevant tools, along with the NSGA-II algorithm, to perform numerical simulations and multi-objective optimization, thus obtaining the Pareto optimal solution set. It also clarifies the correlation between morphological parameters and target variables. The results show the following: (1) The multi-objective optimization model is effective in optimizing the three objectives for block buildings. When compared to the extreme inferior solution, the optimal solution that is closest to the ideal point brings about a 33.2% reduction in BEC and a 1.3 °C drop in UTCI, while achieving a 102.8% increase in FAR. (2) The impact of design variables varies across the three optimization objectives. Among them, the number of floors of slab buildings has the most significant impact on BEC, UTCI and FAR. (3) There is a significant correlation between urban morphological parameters–energy efficiency correlation index, and BEC, UTCI, and FAR.

Suggested Citation

  • Hongchi Zhang & Liangshan You & Hong Yuan & Fei Guo, 2025. "Morphological Optimization of Low-Density Commercial Streets: A Multi-Objective Study Based on Genetic Algorithm," Sustainability, MDPI, vol. 17(16), pages 1-27, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7541-:d:1729119
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/16/7541/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/16/7541/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanxue Li & Dawei Wang & Shanshan Li & Weijun Gao, 2021. "Impact Analysis of Urban Morphology on Residential District Heat Energy Demand and Microclimate Based on Field Measurement Data," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    2. Zhang, Ji & Xu, Le & Shabunko, Veronika & Tay, Stephen En Rong & Sun, Huixuan & Lau, Stephen Siu Yu & Reindl, Thomas, 2019. "Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city," Applied Energy, Elsevier, vol. 240(C), pages 513-533.
    3. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    4. Yang, Zheng & Ghahramani, Ali & Becerik-Gerber, Burcin, 2016. "Building occupancy diversity and HVAC (heating, ventilation, and air conditioning) system energy efficiency," Energy, Elsevier, vol. 109(C), pages 641-649.
    5. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natanian, Jonathan & Aleksandrowicz, Or & Auer, Thomas, 2019. "A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts," Applied Energy, Elsevier, vol. 254(C).
    2. Liu, Jiang & Peng, Changhai & Zhang, Junxue, 2025. "Understanding the relationship between rural morphology and photovoltaic (PV) potential in traditional and non-traditional building clusters using shapley additive exPlanations (SHAP) values," Applied Energy, Elsevier, vol. 380(C).
    3. Yasser Ibrahim & Tristan Kershaw & Paul Shepherd & David Coley, 2021. "On the Optimisation of Urban form Design, Energy Consumption and Outdoor Thermal Comfort Using a Parametric Workflow in a Hot Arid Zone," Energies, MDPI, vol. 14(13), pages 1-22, July.
    4. Perera, A.T.D. & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate resilient interconnected infrastructure: Co-optimization of energy systems and urban morphology," Applied Energy, Elsevier, vol. 285(C).
    5. Yanyan Huang & Yi Yang & Hangyi Ren & Lanxin Ye & Qinhan Liu, 2024. "From Urban Design to Energy Sustainability: How Urban Morphology Influences Photovoltaic System Performance," Sustainability, MDPI, vol. 16(16), pages 1-27, August.
    6. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    7. Mohammed A. Al-Ghamdi & Khalid S. Al-Gahtani, 2022. "Integrated Value Engineering and Life Cycle Cost Modeling for HVAC System Selection," Sustainability, MDPI, vol. 14(4), pages 1-30, February.
    8. Jinhui Ma & Haijing Huang & Mingxi Peng & Yihuan Zhou, 2024. "Investigating the Heterogeneity Effects of Urban Morphology on Building Energy Consumption from a Spatio-Temporal Perspective Using Old Residential Buildings on a University Campus," Land, MDPI, vol. 13(10), pages 1-24, October.
    9. Kittisak Lohwanitchai & Daranee Jareemit, 2021. "Modeling Energy Efficiency Performance and Cost-Benefit Analysis Achieving Net-Zero Energy Building Design: Case Studies of Three Representative Offices in Thailand," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    10. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    11. Teresa Santos & Raquel Deus & Jorge Rocha & José António Tenedório, 2021. "Assessing Sustainable Urban Development Trends in a Dynamic Tourist Coastal Area Using 3D Spatial Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    12. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    13. Yasemin Usta & Lisa Ng & Silvia Santantonio & Guglielmina Mutani, 2025. "Lumped-Parameter Models Comparison for Natural Ventilation Analyses in Buildings at Urban Scale," Energies, MDPI, vol. 18(9), pages 1-26, May.
    14. Rimvydas Adomaitis & Kęstutis Valančius & Giedrė Streckienė, 2024. "The Analysis and Validation of the Measured Heating Energy Consumption of a Single-Family Residential Passive House in Lithuania," Sustainability, MDPI, vol. 16(24), pages 1-25, December.
    15. Younghun Choi & Takuro Kobashi & Yoshiki Yamagata & Akito Murayama, 2021. "Assessment of waterfront office redevelopment plan on optimal building energy demand and rooftop photovoltaics for urban decarbonization," Papers 2108.09029, arXiv.org.
    16. Zhou, P. & Zhang, H. & Zhang, L.P., 2022. "The drivers of energy intensity changes in Chinese cities: A production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 307(C).
    17. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    18. Francesco De Luca, 2023. "Advances in Climatic Form Finding in Architecture and Urban Design," Energies, MDPI, vol. 16(9), pages 1-18, May.
    19. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    20. Simone Giostra & Gabriele Masera & Rafaella Monteiro, 2022. "Solar Typologies: A Comparative Analysis of Urban Form and Solar Potential," Sustainability, MDPI, vol. 14(15), pages 1-31, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7541-:d:1729119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.