IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10764-d1539319.html
   My bibliography  Save this article

Improvement of Engine Combustion and Emission Characteristics by Fuel Property Modulation

Author

Listed:
  • Kaijie Liang

    (Liaoning Provincial Key Laboratory of Energy Storage and Energy Utilization Technology, Yingkou Institute of Technology, Yingkou 115000, China)

  • Jinguang Liang

    (Liaoning Provincial Key Laboratory of Energy Storage and Energy Utilization Technology, Yingkou Institute of Technology, Yingkou 115000, China)

  • Guowei Li

    (Liaoning Provincial Key Laboratory of Energy Storage and Energy Utilization Technology, Yingkou Institute of Technology, Yingkou 115000, China)

  • Zhengri Shao

    (Liaoning Provincial Key Laboratory of Energy Storage and Energy Utilization Technology, Yingkou Institute of Technology, Yingkou 115000, China)

  • Zhipeng Jiang

    (School of Automotive Engineering, Jilin University, Changchun 130052, China)

  • Jincheng Feng

    (School of Automotive Engineering, Jilin University, Changchun 130052, China)

Abstract

The sustainability of diesel engines has come to the forefront of research with the growing global interest in reducing greenhouse gas emissions and improving energy efficiency. The aim of this paper is to support the goal of sustainable development by improving the volatile properties of diesel fuel to promote cleaner combustion in engines. In order to study the effect of diesel fuel volatility on spraying, combustion, and emission, the tests were carried out with the help of the constant volume chamber (CVC) test rig and an engine test rig, respectively. CVC test: A high-speed video camera recorded the spray characteristics of different volatile fuels in a constant-volume combustion bomb. The effects of different rail pressures and ambient back pressures on the spray characteristics were investigated. Engine test: The combustion and emission characteristics of different volatile diesel fuels under different load conditions (25%, 50%, 75%) were investigated in a four-stroke direct-injection diesel engine with the engine speed fixed at 2000 rpm. The test results show that as the rail pressure increases and the ambient pressure decreases, the spray characteristics of the fuels tend to increase; for the more volatile fuels, although reducing the spray tip penetration, the spray projected area and spray cone angle increase, which is conducive to improving the homogeneity of the fuel and air mixing in the cylinder. The improvement of fuel volatility can form more and better-quality mixtures within the ignition delay time (ID), resulting in a 1–2% increase in peak cylinder pressure and a 2–4% increase in peak heat release. For different loads, pre-injection heat release is generated to redefine the ID and combustion duration (CD). Improved fuel volatility effectively reduces carbon monoxide (CO) emissions by about 8–10% and hydrocarbon (HC) emissions by about 13–16%, but it increases nitrogen oxide (NOx) emissions by about 8–11%. Analyzing from the perspective of particulate matter (PM), combined with the aromatic content of volatile fuels, it is recommended to use fuels with moderate volatility and aromatic content under low load conditions, and at medium to large loads, the volatility of the fuel has less weight on particulates and more weight on aromatics, so it is desirable to use the fuel with the lowest volatility and lowest aromatic content of the fuel selected.

Suggested Citation

  • Kaijie Liang & Jinguang Liang & Guowei Li & Zhengri Shao & Zhipeng Jiang & Jincheng Feng, 2024. "Improvement of Engine Combustion and Emission Characteristics by Fuel Property Modulation," Sustainability, MDPI, vol. 16(23), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10764-:d:1539319
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    2. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingfeng Huang & Wei Hong & Kun Shao & Heng Wu, 2024. "Sensitivity Analysis Study of Engine Control Parameters on Sustainable Engine Performance," Sustainability, MDPI, vol. 16(24), pages 1-15, December.
    2. Rafael R. Maes & Geert Potters & Erik Fransen & Rowan Van Schaeren & Silvia Lenaerts, 2022. "Influence of Adding Low Concentration of Oxygenates in Mineral Diesel Oil and Biodiesel on the Concentration of NO, NO 2 and Particulate Matter in the Exhaust Gas of a One-Cylinder Diesel Generator," IJERPH, MDPI, vol. 19(13), pages 1-18, June.
    3. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    4. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    5. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    6. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2016. "Investigation of particulate emission characteristics of a diesel engine fueled with higher alcohols/biodiesel blends," Applied Energy, Elsevier, vol. 163(C), pages 71-80.
    7. Rajesh Kumar, B. & Saravanan, S. & Rana, D. & Nagendran, A., 2016. "Use of some advanced biofuels for overcoming smoke/NOx trade-off in a light-duty DI diesel engine," Renewable Energy, Elsevier, vol. 96(PA), pages 687-699.
    8. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Fangyuan Zheng & Haeng Muk Cho, 2024. "Exploring the Effects of Synergistic Combustion of Alcohols and Biodiesel on Combustion Performance and Emissions of Diesel Engines: A Review," Energies, MDPI, vol. 17(24), pages 1-23, December.
    10. Raju, V. Dhana & Venu, Harish & Subramani, Lingesan & Kishore, P.S. & Prasanna, P.L. & Kumar, D. Vinay, 2020. "An experimental assessment of prospective oxygenated additives on the diverse characteristics of diesel engine powered with waste tamarind biodiesel," Energy, Elsevier, vol. 203(C).
    11. Liang, Zhirong & Yu, Zhenhong & Liu, Haoye & Chen, Longfei & Huang, Xinyan, 2022. "Combustion and emission characteristics of a compression ignition engine burning a wide range of conventional hydrocarbon and alternative fuels," Energy, Elsevier, vol. 250(C).
    12. Wei, L. & Cheung, C.S. & Ning, Z., 2018. "Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine," Energy, Elsevier, vol. 155(C), pages 957-970.
    13. Han, Kai & Lin, Qizhao & Liu, Minghou & Meng, Kesheng & Ni, Zhanshi & Liu, Yu & Tian, Junjian & Qiu, Zhicong, 2022. "Experimental study on the micro-explosion characteristics of biodiesel/1-pentanol and biodiesel/ methanol blended droplets," Renewable Energy, Elsevier, vol. 196(C), pages 261-277.
    14. Ghadikolaei, Meisam Ahmadi & Cheung, Chun Shun & Yung, Ka-Fu, 2018. "Study of combustion, performance and emissions of diesel engine fueled with diesel/biodiesel/alcohol blends having the same oxygen concentration," Energy, Elsevier, vol. 157(C), pages 258-269.
    15. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    16. Loganathan, S. & Leenus Jesu Martin, M. & Nagalingam, B. & Prabhu, L., 2018. "Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function," Energy, Elsevier, vol. 150(C), pages 77-91.
    17. Chu, Huaqiang & Han, Weiwei & Cao, Wenjian & Gu, Mingyan & Xu, Guangju, 2019. "Effect of methane addition to ethylene on the morphology and size distribution of soot in a laminar co-flow diffusion flame," Energy, Elsevier, vol. 166(C), pages 392-400.
    18. Ma, Yinjie & Huang, Sheng & Huang, Ronghua & Zhang, Yu & Xu, Shijie, 2017. "Ignition and combustion characteristics of n-pentanol–diesel blends in a constant volume chamber," Applied Energy, Elsevier, vol. 185(P1), pages 519-530.
    19. Yaoyao Ying & Chenxuan Xu & Dong Liu & Bo Jiang & Pengfei Wang & Wei Wang, 2017. "Nanostructure and Oxidation Reactivity of Nascent Soot Particles in Ethylene/Pentanol Flames," Energies, MDPI, vol. 10(1), pages 1-16, January.
    20. Zhong, Wenjun & Huang, Xinghan & Guo, Heng & Mahmoud, Nasreldin M. & Yan, Feibin & He, Zhixia & Wang, Qian & Wang, Jing, 2023. "Spray-evaporation characteristics of n-pentanol/n-dodecane binary fuel at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 219(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10764-:d:1539319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.