IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10300-d1528696.html
   My bibliography  Save this article

Biofuels and Their Blends—A Review of the Effect of Low Carbon Fuels on Engine Performance

Author

Listed:
  • Qian Xiong

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Yulong Duan

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Dezhi Liang

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Tie Li

    (School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Hongliang Luo

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Run Chen

    (School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

Energy is an important aspect concerning global economic development and environmental conservation. Economic growth has been accompanied by extensive use of fossil fuels, resulting in significant emissions of greenhouse gases and other pollutants. Therefore, researchers have turned their attention to low/zero carbon fuels. Among these, biofuels have attracted wide attention due to their relatively low cost, clean combustion products and renewability. This article reviews the combustion, performance and emission characteristics of internal combustion (IC) engines fueled with biofuels categorized into three generations by their raw material sources. According to most research findings, biofuels generally exhibit poorer combustion performance in IC engines compared to fossil fuels due to their high viscosity and low lower heating value. However, these biofuels, characterized by a high oxygen content, facilitate more complete combustion and reduce emissions of CO, UHC and smoke, albeit increasing NO x emission and fuel consumption. Both thermal efficiency and brake power also tend to decrease, but various optimization strategies such as advanced combustion modes or injection control methods can partially compensate for these drawbacks. In conclusion, biofuels should be a promising low-carbon fuel for IC engines in the future.

Suggested Citation

  • Qian Xiong & Yulong Duan & Dezhi Liang & Tie Li & Hongliang Luo & Run Chen, 2024. "Biofuels and Their Blends—A Review of the Effect of Low Carbon Fuels on Engine Performance," Sustainability, MDPI, vol. 16(23), pages 1-34, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10300-:d:1528696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10300/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10300/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Raghavan, V. & Saravanan, C.G. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2014. "Investigation of evaporation and engine characteristics of pine oil biofuel fumigated in the inlet manifold of a diesel engine," Applied Energy, Elsevier, vol. 115(C), pages 514-524.
    2. Kshirsagar, Charudatta M. & Anand, Ramanathan, 2017. "Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses," Applied Energy, Elsevier, vol. 189(C), pages 555-567.
    3. Baiju, B. & Naik, M.K. & Das, L.M., 2009. "A comparative evaluation of compression ignition engine characteristics using methyl and ethyl esters of Karanja oil," Renewable Energy, Elsevier, vol. 34(6), pages 1616-1621.
    4. Tayari, Sara & Abedi, Reza & Rahi, Abbas, 2020. "Comparative assessment of engine performance and emissions fueled with three different biodiesel generations," Renewable Energy, Elsevier, vol. 147(P1), pages 1058-1069.
    5. Al-lwayzy, Saddam H. & Yusaf, Talal, 2017. "Diesel engine performance and exhaust gas emissions using Microalgae Chlorella protothecoides biodiesel," Renewable Energy, Elsevier, vol. 101(C), pages 690-701.
    6. MohamedMusthafa, M. & Sivapirakasam, S.P. & Udayakumar, M., 2011. "Comparative studies on fly ash coated low heat rejection diesel engine on performance and emission characteristics fueled by rice bran and pongamia methyl ester and their blend with diesel," Energy, Elsevier, vol. 36(5), pages 2343-2351.
    7. Yatish, K.V. & Lalithamba, H.S. & Suresh, R. & Harsha Hebbar, H.R., 2018. "Optimization of bauhinia variegata biodiesel production and its performance, combustion and emission study on diesel engine," Renewable Energy, Elsevier, vol. 122(C), pages 561-575.
    8. Perumal, Varatharaju & Ilangkumaran, M., 2017. "Experimental analysis of engine performance, combustion and emission using pongamia biodiesel as fuel in CI engine," Energy, Elsevier, vol. 129(C), pages 228-236.
    9. Jegan, C. Dhayananth & Selvakumaran, T. & Karthe, M. & Hemachandu, P. & Gopinathan, R. & Sathish, T. & Ağbulut, Ümit, 2023. "Influences of various metal oxide-based nanosized particles-added algae biodiesel on engine characteristics," Energy, Elsevier, vol. 284(C).
    10. Sorguven, Esra & Özilgen, Mustafa, 2010. "Thermodynamic assessment of algal biodiesel utilization," Renewable Energy, Elsevier, vol. 35(9), pages 1956-1966.
    11. Tripathi, Shweta & Subramanian, K.A., 2017. "Experimental investigation of utilization of Soya soap stock based acid oil biodiesel in an automotive compression ignition engine," Applied Energy, Elsevier, vol. 198(C), pages 332-346.
    12. Daho, Tizane & Vaitilingom, Gilles & Ouiminga, Salifou K. & Piriou, Bruno & Zongo, Augustin S. & Ouoba, Samuel & Koulidiati, Jean, 2013. "Influence of engine load and fuel droplet size on performance of a CI engine fueled with cottonseed oil and its blends with diesel fuel," Applied Energy, Elsevier, vol. 111(C), pages 1046-1053.
    13. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    14. Thomas, Justin Jacob & Sabu, V.R. & Nagarajan, G. & Kumar, Suraj & Basrin, G., 2020. "Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions," Energy, Elsevier, vol. 206(C).
    15. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N., 2017. "Effect of exhaust gas recirculation, fuel injection pressure and injection timing on the performance of common rail direct injection engine powered with honge biodiesel (BHO)," Energy, Elsevier, vol. 139(C), pages 828-841.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    2. Singh, Thokchom Subhaschandra & Verma, Tikendra Nath, 2019. "Biodiesel production from Momordica Charantia (L.): Extraction and engine characteristics," Energy, Elsevier, vol. 189(C).
    3. Dariusz Kurczyński & Grzegorz Wcisło & Piotr Łagowski, 2021. "Experimental Study of Fuel Consumption and Exhaust Gas Composition of a Diesel Engine Powered by Biodiesel from Waste of Animal Origin," Energies, MDPI, vol. 14(12), pages 1-22, June.
    4. Thangarasu, Vinoth & M, Angkayarkan Vinayakaselvi & Ramanathan, Anand, 2021. "Artificial neural network approach for parametric investigation of biodiesel synthesis using biocatalyst and engine characteristics of diesel engine fuelled with Aegle Marmelos Correa biodiesel," Energy, Elsevier, vol. 230(C).
    5. Rajak, Upendra & Nashine, Prerana & Verma, Tikendra Nath, 2019. "Assessment of diesel engine performance using spirulina microalgae biodiesel," Energy, Elsevier, vol. 166(C), pages 1025-1036.
    6. Gavaskar, T. & Ramanan M, Venkata & Arun, K. & Arivazhagan, S., 2023. "The combined effect of green synthesized nitrogen-doped carbon quantum dots blended jackfruit seed biodiesel and acetylene gas tested on the dual fuel engine," Energy, Elsevier, vol. 275(C).
    7. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    8. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    9. Piotr Łagowski & Grzegorz Wcisło & Dariusz Kurczyński, 2024. "Study of Combustion Process Parameters in a Diesel Engine Powered by Biodiesel from Waste of Animal Origin," Energies, MDPI, vol. 17(23), pages 1-19, November.
    10. Homeyra Piri & Massimiliano Renzi & Marco Bietresato, 2023. "Technical Implications of the Use of Biofuels in Agricultural and Industrial Compression-Ignition Engines with a Special Focus on the Interactions with (Bio)lubricants," Energies, MDPI, vol. 17(1), pages 1-45, December.
    11. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    12. Dwivedi, Gaurav & Sharma, M.P., 2014. "Prospects of biodiesel from Pongamia in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 114-122.
    13. Oyetola Ogunkunle & Noor A. Ahmed, 2021. "Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    14. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    15. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    16. Jaichandar, S. & Senthil Kumar, P. & Annamalai, K., 2012. "Combined effect of injection timing and combustion chamber geometry on the performance of a biodiesel fueled diesel engine," Energy, Elsevier, vol. 47(1), pages 388-394.
    17. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
    18. Bora, Plaban & Konwar, Lakhya Jyoti & Boro, Jutika & Phukan, Mayur Mausoom & Deka, Dhanapati & Konwar, Bolin Kumar, 2014. "Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel," Applied Energy, Elsevier, vol. 135(C), pages 450-460.
    19. Babu, D. & Karvembu, R. & Anand, R., 2018. "Impact of split injection strategy on combustion, performance and emissions characteristics of biodiesel fuelled common rail direct injection assisted diesel engine," Energy, Elsevier, vol. 165(PB), pages 577-592.
    20. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10300-:d:1528696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.