IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i21p9317-d1507425.html
   My bibliography  Save this article

A Review on the Effective Utilization of Organic Phase Change Materials for Energy Efficiency in Buildings

Author

Listed:
  • Dhivya Kamaraj

    (Department of Civil Engineering, Sona College of Technology, Salem 636-005, India
    These authors contributed equally to this work.)

  • Sellamuthu Ramachandran Rajagopal Senthilkumar

    (Department of Civil Engineering, Sona College of Technology, Salem 636-005, India)

  • Malathy Ramalingam

    (Department of Civil Engineering, Sona College of Technology, Salem 636-005, India)

  • Ramkumar Vanaraj

    (School of Chemical Engineering, Yeungnam University, Gyeongsan 38451, Republic of Korea
    These authors contributed equally to this work.)

  • Seong-Cheol Kim

    (School of Chemical Engineering, Yeungnam University, Gyeongsan 38451, Republic of Korea)

  • Mayakrishnan Prabakaran

    (Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), National University Corporation Shinshu University, 3-15-1, Tokida, Ueda 386-8567, Nagano, Japan
    Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600-077, India)

  • Ick-Soo Kim

    (Nano Fusion Technology Research Lab, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda 386-8567, Nagano, Japan)

Abstract

Energy efficiency is critical for achieving building sustainability because it means that fewer resources are consumed. In this context, the advancement of phase-changing materials has attracted attention with regard to the integration and management of energy efficiency in construction projects. Buildings consume 40% of the global energy output annually, accounting for one-third of the global greenhouse gas emissions. For hot weather-prone construction, PCMs should have a melting temperature of 25–50 °C. For more than 30 years, researchers worldwide have experimented with PCMs at various temperatures, but few studies have been conducted in hot or harsh environments. According to recent studies, the amount of PCMs in construction materials has been limited to 20%, and exceeding this ratio was shown to significantly affect the compressive strength of concrete specimens. In this study, various phase-changing concrete materials were investigated to reduce the thermal energy consumption of buildings. This paper aims to provide an overview of the current state-of-the-art phase change materials for constructing thermal energy storage building materials. It also includes a brief review of the most recent developments in phase change technologies and their encapsulation techniques based on thermophysical properties. Implementing PCM technology in buildings will also maintain good indoor air quality. These materials are widely used in various real-time applications to significantly enhance thermal comfort in buildings.

Suggested Citation

  • Dhivya Kamaraj & Sellamuthu Ramachandran Rajagopal Senthilkumar & Malathy Ramalingam & Ramkumar Vanaraj & Seong-Cheol Kim & Mayakrishnan Prabakaran & Ick-Soo Kim, 2024. "A Review on the Effective Utilization of Organic Phase Change Materials for Energy Efficiency in Buildings," Sustainability, MDPI, vol. 16(21), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9317-:d:1507425
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/21/9317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/21/9317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Tingyu & Wang, Shuangfeng & Luo, Ruilian & Zhu, Chunyu & Akiyama, Tomohiro & Zhang, Zhengguo, 2016. "Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage," Applied Energy, Elsevier, vol. 171(C), pages 113-119.
    2. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    3. Yu, Nan & Chen, Chao & Mahkamov, Khamid & Han, Fengtao & Zhao, Chen & Lin, Jie & Jiang, Lixing & Li, Yaru, 2020. "Selection of a phase change material and its thickness for application in walls of buildings for solar-assisted steam curing of precast concrete," Renewable Energy, Elsevier, vol. 150(C), pages 808-820.
    4. Atinafu, Dimberu G. & Dong, Wenjun & Huang, Xiubing & Gao, Hongyi & Wang, Ge, 2018. "Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity," Applied Energy, Elsevier, vol. 211(C), pages 1203-1215.
    5. Wang, Tao & Mantha, Divakar & Reddy, Ramana G., 2013. "Novel low melting point quaternary eutectic system for solar thermal energy storage," Applied Energy, Elsevier, vol. 102(C), pages 1422-1429.
    6. Warzoha, Ronald J. & Fleischer, Amy S., 2015. "Effect of carbon nanotube interfacial geometry on thermal transport in solid–liquid phase change materials," Applied Energy, Elsevier, vol. 154(C), pages 271-276.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yali Guo & Chufan Liang & Hui Liu & Luyuan Gong & Minle Bao & Shengqiang Shen, 2025. "A Review on Phase-Change Materials (PCMs) in Solar-Powered Refrigeration Systems," Energies, MDPI, vol. 18(6), pages 1-33, March.
    2. Michał Rogowski & Maciej Fabrykiewicz & Rafał Andrzejczyk, 2025. "Melting in Shell-and-Tube and Shell-and-Coil Thermal Energy Storage: Analytical Correlation for Melting Fraction," Energies, MDPI, vol. 18(11), pages 1-21, June.
    3. Chuanqing Huang & Jiajie Liu & Jiajun Chen & Junwei Su & Chang Su, 2025. "Justification of Pore Configuration of Metal-Foam-Filled Thermal Energy Storage Tank: Optimization of Energy Performance," Energies, MDPI, vol. 18(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    3. Jung, Hyunjun & Subban, Chinmayee V. & McTigue, Joshua Dominic & Martinez, Jayson J. & Copping, Andrea E. & Osorio, Julian & Liu, Jian & Deng, Z. Daniel, 2022. "Extracting energy from ocean thermal and salinity gradients to power unmanned underwater vehicles: State of the art, current limitations, and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    5. Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2016. "Magnetic microencapsulated phase change materials with an organo-silica shell: Design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films," Energy, Elsevier, vol. 98(C), pages 225-239.
    6. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
    8. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    9. Xu, Biwan & Ma, Hongyan & Lu, Zeyu & Li, Zongjin, 2015. "Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites," Applied Energy, Elsevier, vol. 160(C), pages 358-367.
    10. Wang, Yunming & Tang, Bingtao & Zhang, Shufen, 2014. "Organic, cross-linking, and shape-stabilized solar thermal energy storage materials: A reversible phase transition driven by broadband visible light," Applied Energy, Elsevier, vol. 113(C), pages 59-66.
    11. Ma, Ying & Wei, Rongrong & Zuo, Hongyan & Zuo, Qingsong & Luo, Xiaoyu & Chen, Ying & Wu, Shuying & Chen, Wei, 2024. "N-doped EG@MOFs derived porous carbon composite phase change materials for thermal optimization of Li-ion batteries at low temperature," Energy, Elsevier, vol. 286(C).
    12. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    13. Lei, Jiawei & Yang, Jinglei & Yang, En-Hua, 2016. "Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore," Applied Energy, Elsevier, vol. 162(C), pages 207-217.
    14. Jaworski, Maciej & Łapka, Piotr & Furmański, Piotr, 2014. "Numerical modelling and experimental studies of thermal behaviour of building integrated thermal energy storage unit in a form of a ceiling panel," Applied Energy, Elsevier, vol. 113(C), pages 548-557.
    15. Kensby, Johan & Trüschel, Anders & Dalenbäck, Jan-Olof, 2015. "Potential of residential buildings as thermal energy storage in district heating systems – Results from a pilot test," Applied Energy, Elsevier, vol. 137(C), pages 773-781.
    16. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    17. Sun, Xiaoqin & Medina, Mario A. & Lee, Kyoung Ok & Jin, Xing, 2018. "Laboratory assessment of residential building walls containing pipe-encapsulated phase change materials for thermal management," Energy, Elsevier, vol. 163(C), pages 383-391.
    18. Alvi, Jahan Zeb & Feng, Yongqiang & Wang, Qian & Imran, Muhammad & Pei, Gang, 2021. "Effect of phase change materials on the performance of direct vapor generation solar organic Rankine cycle system," Energy, Elsevier, vol. 223(C).
    19. Pitié, F. & Zhao, C.Y. & Baeyens, J. & Degrève, J. & Zhang, H.L., 2013. "Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles," Applied Energy, Elsevier, vol. 109(C), pages 505-513.
    20. Cong Zhou & Yizhen Li & Fenghao Wang & Zeyuan Wang & Qing Xia & Yuping Zhang & Jun Liu & Boyang Liu & Wanlong Cai, 2023. "A Review of the Performance Improvement Methods of Phase Change Materials: Application for the Heat Pump Heating System," Energies, MDPI, vol. 16(6), pages 1-21, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:21:p:9317-:d:1507425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.