IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2923-d1670685.html
   My bibliography  Save this article

Melting in Shell-and-Tube and Shell-and-Coil Thermal Energy Storage: Analytical Correlation for Melting Fraction

Author

Listed:
  • Michał Rogowski

    (Institute of Energy, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland)

  • Maciej Fabrykiewicz

    (Institute of Technology, State University of Applied Sciences in Elbląg, Wojska Polskiego 1, 82-300 Elbląg, Poland)

  • Rafał Andrzejczyk

    (Institute of Energy, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland)

Abstract

The following study investigated the melting behavior of coconut oil as a phase-change material in shell-and-tube and shell-and-coil thermal energy storage systems. The primary objective was to deepen the understanding of PCM melting dynamics under varying boundary conditions, aiming to optimize TES designs for renewable energy applications. This research addresses a gap in understanding how different heat-transfer configurations and boundary conditions affect melting efficiency. Experimental setups included two distinct heat-transfer surfaces in a cylindrical shell—a copper tube and a copper coil—tested under constant wall temperatures (34 °C for the tube, 33 °C for the coil) and constant heat flux (597 W/m 2 for the coil). Findings reveal that melting under constant heat flux takes approximately twice as long as under constant wall temperatures, underscoring the critical role of heat-transfer conditions in TES performance. The liquid fraction was estimated using two approaches: image-based analysis and the volume-averaged temperature method. The former proved less reliable due to geometric limitations, particularly when the heat-transfer surface was distant from the shell wall. Conversely, the latter yielded higher accuracy, especially in the shell-and-tube setup. Due to the scarcity of correlations for constant heat-flux conditions, the novel contribution of this work is the development of a modified semi-empirical correlation for the shell-and-coil TES system. For this purpose, an existing model, which demonstrated strong alignment with experimental data, was adapted. The findings suggest that slower melting under constant heat flux could benefit applications needing sustained heat release, like solar energy systems. Future work could investigate additional PCMs or novel geometries to further improve TES efficiency and scalability.

Suggested Citation

  • Michał Rogowski & Maciej Fabrykiewicz & Rafał Andrzejczyk, 2025. "Melting in Shell-and-Tube and Shell-and-Coil Thermal Energy Storage: Analytical Correlation for Melting Fraction," Energies, MDPI, vol. 18(11), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2923-:d:1670685
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bošnjak Hordov, Jelena & Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Ćosić, Marija & Jakić, Miće & Arıcı, Müslüm, 2024. "Review of organic and inorganic waste-based phase change composites in latent thermal energy storage: Thermal properties and applications," Energy, Elsevier, vol. 306(C).
    2. Dhivya Kamaraj & Sellamuthu Ramachandran Rajagopal Senthilkumar & Malathy Ramalingam & Ramkumar Vanaraj & Seong-Cheol Kim & Mayakrishnan Prabakaran & Ick-Soo Kim, 2024. "A Review on the Effective Utilization of Organic Phase Change Materials for Energy Efficiency in Buildings," Sustainability, MDPI, vol. 16(21), pages 1-21, October.
    3. Boroojerdian, Ashkan & Nemati, H. & Selahi, Ehsan, 2023. "Direct and non-contact measurement of liquid fraction in unconstrained encapsulated PCM melting," Energy, Elsevier, vol. 284(C).
    4. Emam, Mohamed & Ookawara, Shinichi & Ahmed, Mahmoud, 2019. "Thermal management of electronic devices and concentrator photovoltaic systems using phase change material heat sinks: Experimental investigations," Renewable Energy, Elsevier, vol. 141(C), pages 322-339.
    5. R. Andrzejczyk & P. Kozak & T. Muszyński, 2020. "Experimental Investigations on the Influence of Coil Arrangement on Melting/Solidification Processes," Energies, MDPI, vol. 13(23), pages 1-19, December.
    6. Seddegh, Saeid & Wang, Xiaolin & Joybari, Mahmood Mastani & Haghighat, Fariborz, 2017. "Investigation of the effect of geometric and operating parameters on thermal behavior of vertical shell-and-tube latent heat energy storage systems," Energy, Elsevier, vol. 137(C), pages 69-82.
    7. Xu, Yang & Li, Ming-Jia & Zheng, Zhang-Jing & Xue, Xiao-Dai, 2018. "Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment," Applied Energy, Elsevier, vol. 212(C), pages 868-880.
    8. Saulius Pakalka & Kęstutis Valančius & Giedrė Streckienė, 2021. "Experimental and Theoretical Investigation of the Natural Convection Heat Transfer Coefficient in Phase Change Material (PCM) Based Fin-and-Tube Heat Exchanger," Energies, MDPI, vol. 14(3), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
    2. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Zhanjun Guo & Wu Zhou & Sen Liu & Zhangyang Kang & Rufei Tan, 2023. "Effects of Geometric Parameters and Heat-Transfer Fluid Injection Direction on Enhanced Phase-Change Energy Storage in Vertical Shell-and-Tube System," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    4. Kumar, Ashish & Saha, Sandip K., 2020. "Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads," Applied Energy, Elsevier, vol. 263(C).
    5. Choi, Sung Ho & Ko, Han Seo & Sohn, Dong Kee, 2022. "Bubble-driven flow enhancement of heat discharge of latent heat thermal energy storage," Energy, Elsevier, vol. 244(PB).
    6. He, Junjie & Chu, Wenxiao & Wang, Qiuwang, 2025. "Applications of low melting point alloy for electronic thermal management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    7. Yan, Zhongjun & Zhu, Yuexiang & Liu, Lifang & Yu, Zhun (Jerry) & Li, Shuisheng & Zhang, Guoqiang, 2023. "Performance enhancement of cylindrical latent heat storage units in hot water tanks via wavy design," Renewable Energy, Elsevier, vol. 218(C).
    8. Khan, Shoukat Alim & Bicer, Yusuf & Al-Ghamdi, Sami G. & Koç, Muammer, 2020. "Performance evaluation of self-cooling concentrating photovoltaics systems using nucleate boiling heat transfer," Renewable Energy, Elsevier, vol. 160(C), pages 1081-1095.
    9. Rusin, Krzysztof & Ochmann, Jakub & Bartela, Łukasz & Rulik, Sebastian & Stanek, Bartosz & Jurczyk, Michał & Waniczek, Sebastian, 2022. "Influence of geometrical dimensions and particle diameter on exergy performance of packed-bed thermal energy storage," Energy, Elsevier, vol. 260(C).
    10. Park, Jinsoo & Choi, Sung Ho & Karng, Sarng Woo, 2021. "Cascaded latent thermal energy storage using a charging control method," Energy, Elsevier, vol. 215(PA).
    11. Xu, Huaqian & Zuo, Hongyang & Zeng, Kuo & Lu, Yongwen & Chi, Bowen & Flamant, Gilles & Yang, Haiping & Chen, Hanping, 2024. "Investigation of the modified Gaussian-based non-phase field method for numerical simulation of latent heat storage," Energy, Elsevier, vol. 288(C).
    12. Zhang, Shuai & Yan, Yuying, 2022. "Evaluation of discharging performance of molten salt/ceramic foam composite phase change material in a shell-and-tube latent heat thermal energy storage unit," Renewable Energy, Elsevier, vol. 198(C), pages 1210-1223.
    13. Zuo, Hongyang & Wu, Mingyang & Zeng, Kuo & Zhou, Yuan & Kong, Jiayue & Qiu, Yi & Lin, Meng & Flamant, Gilles, 2021. "Numerical investigation and optimal design of partially filled sectorial metal foam configuration in horizontal latent heat storage unit," Energy, Elsevier, vol. 237(C).
    14. Ling, Yun-Zhi & Zhang, Xiao-Song & Wang, Feng & She, Xiao-Hui, 2020. "Performance study of phase change materials coupled with three-dimensional oscillating heat pipes with different structures for electronic cooling," Renewable Energy, Elsevier, vol. 154(C), pages 636-649.
    15. Hou, Yujie & Chen, Hua & Liu, Xiuli, 2022. "Experimental study on the effect of partial filling of copper foam on heat storage of paraffin-based PCM," Renewable Energy, Elsevier, vol. 192(C), pages 561-571.
    16. Wang, Jian & Kong, Hui & Xu, Yaobin & Wu, Jinsong, 2019. "Experimental investigation of heat transfer and flow characteristics in finned copper foam heat sinks subjected to jet impingement cooling," Applied Energy, Elsevier, vol. 241(C), pages 433-443.
    17. Yang, Xiaohu & Wei, Pan & Cui, Xin & Jin, Liwen & He, Ya-Ling, 2019. "Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study," Applied Energy, Elsevier, vol. 250(C), pages 1457-1467.
    18. Nakhchi, M.E. & Hatami, M. & Rahmati, M., 2021. "A numerical study on the effects of nanoparticles and stair fins on performance improvement of phase change thermal energy storages," Energy, Elsevier, vol. 215(PA).
    19. Shamberger, Patrick J. & Bruno, Nickolaus M., 2020. "Review of metallic phase change materials for high heat flux transient thermal management applications," Applied Energy, Elsevier, vol. 258(C).
    20. Shen, Yongliang & Liu, Shuli & Mazhar, Abdur Rehman & Han, Xiaojing & Yang, Liu & Yang, Xiu'e, 2021. "A review of solar-driven short-term low temperature heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2923-:d:1670685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.