Natural Gas Consumption Forecasting Based on Homoheterogeneous Stacking Ensemble Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, Bin & Wang, Jun, 2020. "Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation," Energy Economics, Elsevier, vol. 90(C).
- Parikh, Jyoti & Purohit, Pallav & Maitra, Pallavi, 2007. "Demand projections of petroleum products and natural gas in India," Energy, Elsevier, vol. 32(10), pages 1825-1837.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Atul Anand & L Suganthi, 2018. "Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand," Energies, MDPI, vol. 11(4), pages 1-15, March.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).
- Shi, Tao & Li, Chongyang & Zhang, Wei & Zhang, Yi, 2023. "Forecasting on metal resource spot settlement price: New evidence from the machine learning model," Resources Policy, Elsevier, vol. 81(C).
- Emmanouil Sofianos & Emmanouil Zaganidis & Theophilos Papadimitriou & Periklis Gogas, 2024. "Forecasting East and West Coast Gasoline Prices with Tree-Based Machine Learning Algorithms," Energies, MDPI, vol. 17(6), pages 1-14, March.
- Jiang, Ping & Liu, Zhenkun & Wang, Jianzhou & Zhang, Lifang, 2021. "Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm," Resources Policy, Elsevier, vol. 73(C).
- Askari, S. & Montazerin, N. & Zarandi, M.H. Fazel, 2015. "Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems," Energy, Elsevier, vol. 83(C), pages 252-266.
- Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
- Sacchidananda Mukherjee, 2020.
"Estimation and Projection of Petroleum Demand and Tax Collection from Petroleum Sector in India,"
Journal of Infrastructure Development, India Development Foundation, vol. 12(1), pages 39-68, June.
- Mukherjee, Sacchidananda, 2019. "Estimation and Projection of Petroleum Demand and Tax Collection from Petroleum Sector in India," Working Papers 19/279, National Institute of Public Finance and Policy.
- Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
- García-Gusano, Diego & Suárez-Botero, Jasson & Dufour, Javier, 2018. "Long-term modelling and assessment of the energy-economy decoupling in Spain," Energy, Elsevier, vol. 151(C), pages 455-466.
- Wadud, Zia & Dey, Himadri S. & Kabir, Md. Ashfanoor & Khan, Shahidul I., 2011. "Modeling and forecasting natural gas demand in Bangladesh," Energy Policy, Elsevier, vol. 39(11), pages 7372-7380.
- Yusof, Ahmad & Raman, Maznah & Nopiah, Zulkifli, 2013. "Modeling of the Malaysian Crude Oil System," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 47(1), pages 125-130.
- Wang, Qiang & Li, Shuyu & Zhang, Min & Li, Rongrong, 2022. "Impact of COVID-19 pandemic on oil consumption in the United States: A new estimation approach," Energy, Elsevier, vol. 239(PC).
- de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Ethanol demand under the flex-fuel technology regime in Brazil," Energy Economics, Elsevier, vol. 33(6), pages 1146-1154.
- Xu Gong & Keqin Guan & Qiyang Chen, 2022. "The role of textual analysis in oil futures price forecasting based on machine learning approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1987-2017, October.
- Gielen, Dolf & Taylor, Peter, 2009. "Indicators for industrial energy efficiency in India," Energy, Elsevier, vol. 34(8), pages 962-969.
- Yukseltan, Ergun & Yucekaya, Ahmet & Bilge, Ayse Humeyra & Agca Aktunc, Esra, 2021. "Forecasting models for daily natural gas consumption considering periodic variations and demand segregation," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
- Silva, Rodolfo Rodrigues Barrionuevo & Martins, André Christóvão Pio & Soler, Edilaine Martins & Baptista, Edméa Cássia & Balbo, Antonio Roberto & Nepomuceno, Leonardo, 2022. "Two-stage stochastic energy procurement model for a large consumer in hydrothermal systems," Energy Economics, Elsevier, vol. 107(C).
- Weixin Sun & Heli Chen & Feng Liu & Yong Wang, 2025. "Point and interval prediction of crude oil futures prices based on chaos theory and multiobjective slime mold algorithm," Annals of Operations Research, Springer, vol. 345(2), pages 1003-1033, February.
More about this item
Keywords
homoheterogeneous stacking ensemble learning; natural gas consumption forecasting; HFCM; LSTM;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8691-:d:1494553. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.