IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6561-d1447179.html
   My bibliography  Save this article

Assessing the Carbon Footprint of Viticultural Production in Central European Conditions

Author

Listed:
  • Petr Bača

    (Department of Electrotechnology, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic)

  • Vladimír Mašán

    (Department of Horticultural Machinery, Faculty of Horticulture, Mendel University in Brno, Valtická 337, 691 44 Lednice, Czech Republic)

  • Petr Vanýsek

    (Department of Electrotechnology, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic)

  • Patrik Burg

    (Department of Horticultural Machinery, Faculty of Horticulture, Mendel University in Brno, Valtická 337, 691 44 Lednice, Czech Republic)

  • Tomáš Binar

    (Department of Electrotechnology, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 10, 616 00 Brno, Czech Republic)

  • Jana Burgová

    (Department of Breeding and Propagation of Horticultural Plants, Faculty of Horticulture, Mendel University in Brno, Valtická 337, 691 44 Lednice, Czech Republic)

  • Zdeněk Abrham

    (Research Institute of Agriculture Engineering, p. r. i., Drnovská 507, 161 01 Prague, Czech Republic)

Abstract

A number of factors will increasingly play a role in the sustainability of wine production in the coming period. The current situation suggests that the analysis of energy consumption and greenhouse gas (GHG) emissions will play a particularly important role. The so-called carbon footprint, expressed in CO 2 equivalents, is used to express the sum of GHG emissions. This study presents an analysis of vine cultivation in a particular Central European region, with the main focus on quantifying the inputs, yield, fuel consumption, and GHG emissions. The emphasis was placed on conventional, integrated, and ecological production systems of growing, evaluated with the help of the developed AGROTEKIS version 5 software. A total of 30 wine-grower entities in the Morava wine-growing region, the subregion Velké Pavlovice, in the Czech Republic weather climate, were included in the input data survey. By analyzing the aggregated values, the real savings in energy and curbing of CO 2 emissions of vineyards could be observed, relating to individual work procedures with lower energy demand used in the vineyard treatment as well as the amounts and doses of agrochemicals used. The average values of the total impacts did not show any statistically significant differences between the conventional (971 ± 78 kg CO 2 eq·ha −1 ·year −1 ) and integrated production systems (930 ± 62 kg CO 2 eq·ha −1 ·year −1 ), whereas the values for the ecological production system were significantly higher (1479 ± 40 kg CO 2 eq·ha −1 ·year −1 ). The results show that growing vines under ecological production conditions generates a higher proportion of the carbon footprint than under conventional production conditions. Overall, the best results can be achieved in an integrated production system.

Suggested Citation

  • Petr Bača & Vladimír Mašán & Petr Vanýsek & Patrik Burg & Tomáš Binar & Jana Burgová & Zdeněk Abrham, 2024. "Assessing the Carbon Footprint of Viticultural Production in Central European Conditions," Sustainability, MDPI, vol. 16(15), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6561-:d:1447179
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6561/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6561/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rose, David C. & Sutherland, William J. & Parker, Caroline & Lobley, Matt & Winter, Michael & Morris, Carol & Twining, Susan & Ffoulkes, Charles & Amano, Tatsuya & Dicks, Lynn V., 2016. "Decision support tools for agriculture: Towards effective design and delivery," Agricultural Systems, Elsevier, vol. 149(C), pages 165-174.
    2. Isabella Ghiglieno & Anna Simonetto & Luca Facciano & Marco Tonni & Pierluigi Donna & Leonardo Valenti & Gianni Gilioli, 2023. "Comparing the Carbon Footprint of Conventional and Organic Vineyards in Northern Italy," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    3. Yuval Tamar Hefler & Meidad Kissinger, 2023. "Grape Wine Cultivation Carbon Footprint: Embracing a Life Cycle Approach across Climatic Zones," Agriculture, MDPI, vol. 13(2), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeroen Ooge & Katrien Verbert, 2022. "Visually Explaining Uncertain Price Predictions in Agrifood: A User-Centred Case-Study," Agriculture, MDPI, vol. 12(7), pages 1-25, July.
    2. Gary Bentrup & Michael G. Dosskey, 2022. "Tree Advisor: A Novel Woody Plant Selection Tool to Support Multifunctional Objectives," Land, MDPI, vol. 11(3), pages 1-23, March.
    3. Elena Feo & Sylvia Burssens & Hannes Mareen & Pieter Spanoghe, 2022. "Shedding Light into the Need of Knowledge Sharing in H2020 Thematic Networks for the Agriculture and Forestry Innovation," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    4. Walsh, Conor & Renn, Mara & Klauser, Dominik & de Pinto, Alessandro & Haggar, Jeremy & Abdur, Rouf & Hopkins, Richard J. & Zamil, Farhad, 2024. "Translating theory into practice: A flexible decision-making tool to support the design and implementation of climate-smart agriculture projects," Agricultural Systems, Elsevier, vol. 219(C).
    5. Hidalgo, Francisco & Quiñones-Ruiz, Xiomara F. & Birkenberg, Athena & Daum, Thomas & Bosch, Christine & Hirsch, Patrick & Birner, Regina, 2023. "Digitalization, sustainability, and coffee. Opportunities and challenges for agricultural development," Agricultural Systems, Elsevier, vol. 208(C).
    6. So Pyay Thar & Thiagarajah Ramilan & Robert J. Farquharson & Deli Chen, 2021. "Identifying Potential for Decision Support Tools through Farm Systems Typology Analysis Coupled with Participatory Research: A Case for Smallholder Farmers in Myanmar," Agriculture, MDPI, vol. 11(6), pages 1-20, June.
    7. Michael Friedrich Tröster, 2023. "Assessing the Value of Organic Fertilizers from the Perspective of EU Farmers," Agriculture, MDPI, vol. 13(5), pages 1-11, May.
    8. Carof, Matthieu & Godinot, Olivier, 2018. "A free online tool to calculate three nitrogen-related indicators for farming systems," Agricultural Systems, Elsevier, vol. 162(C), pages 28-33.
    9. Zixun Guo & Zhimei Gao & Wenbin Zhang, 2023. "Accounting and Decomposition of Energy Footprint: Evidence from 28 Sectors in China," Sustainability, MDPI, vol. 15(17), pages 1-24, September.
    10. Jouan, Julia & Carof, Matthieu & Baccar, Rim & Bareille, Nathalie & Bastian, Suzanne & Brogna, Delphine & Burgio, Giovanni & Couvreur, Sébastien & Cupiał, Michał & Dufrêne, Marc & Dumont, Benjamin & G, 2021. "SEGAE: An online serious game to learn agroecology," Agricultural Systems, Elsevier, vol. 191(C).
    11. Michels, Marius & Musshoff, Oliver, 2021. "Timing of Smartphone Adoption in Agriculture: A Tobit Regression Analysis," 2021 Conference, August 17-31, 2021, Virtual 315358, International Association of Agricultural Economists.
    12. Yayan Apriyana & Elza Surmaini & Woro Estiningtyas & Aris Pramudia & Fadhlullah Ramadhani & Suciantini Suciantini & Erni Susanti & Rima Purnamayani & Haris Syahbuddin, 2021. "The Integrated Cropping Calendar Information System: A Coping Mechanism to Climate Variability for Sustainable Agriculture in Indonesia," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    13. Sophia Xiaoxia Duan & Santoso Wibowo & Josephine Chong, 2021. "A Multicriteria Analysis Approach for Evaluating the Performance of Agriculture Decision Support Systems for Sustainable Agribusiness," Mathematics, MDPI, vol. 9(8), pages 1-16, April.
    14. Gackstetter, David & von Bloh, Malte & Hannus, Veronika & Meyer, Sebastian T. & Weisser, Wolfgang & Luksch, Claudia & Asseng, Senthold, 2023. "Autonomous field management – An enabler of sustainable future in agriculture," Agricultural Systems, Elsevier, vol. 206(C).
    15. Oksana Hrynevych & Miguel Blanco Canto & Mercedes Jiménez García, 2022. "Tendencies of Precision Agriculture in Ukraine: Disruptive Smart Farming Tools as Cooperation Drivers," Agriculture, MDPI, vol. 12(5), pages 1-15, May.
    16. Grothkopf, Carina & Schulze, Holger, 2021. "Empirische Analyse der Einflussfaktoren auf die Digitalisierung der Milchviehhaltung," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317061, German Association of Agricultural Economists (GEWISOLA).
    17. Rose, David C. & Sutherland, William J. & Barnes, Andrew P. & Borthwick, Fiona & Ffoulkes, Charles & Hall, Clare & Moorby, Jon M. & Nicholas-Davies, Phillipa & Twining, Susan & Dicks, Lynn V., 2019. "Integrated farm management for sustainable agriculture: Lessons for knowledge exchange and policy," Land Use Policy, Elsevier, vol. 81(C), pages 834-842.
    18. Toloi, Rodrigo Carlo & Reis, João Gilberto Mendes dos & Toloi, Marley Nunes Vituri & Vendrametto, Oduvaldo & Cabral, José António Sarsfield Pereira, 2022. "Applying analytic hierarchy process (AHP) to identify decision-making in soybean supply chains: a case of Mato Grosso production," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 60(2), January.
    19. Dimitrios Iakovidis & Yiorgos Gadanakis & Julian Park, 2023. "Farmer and Adviser Perspectives on Business Planning and Control in Mediterranean Agriculture: Evidence from Argolida, Greece," Agriculture, MDPI, vol. 13(2), pages 1-20, February.
    20. Sun, Yong & Miao, Yiling & Xie, Zhiju & Wu, Runtian, 2024. "Drivers and barriers to digital transformation in agriculture: An evolutionary game analysis based on the experience of China," Agricultural Systems, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6561-:d:1447179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.