IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7372-d1135814.html
   My bibliography  Save this article

Impact of Copper Stabilizer Thickness on SFCL Performance with PV-Based DC Systems Using a Multilayer Thermoelectric Model

Author

Listed:
  • Hamoud Alafnan

    (Department of Electrical Engineering, College of Engineering, University of Ha’il, Ha’il 55476, Saudi Arabia)

  • Xiaoze Pei

    (Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, UK)

  • Diaa-Eldin A. Mansour

    (Department of Electrical Power Engineering, Faculty of Engineering, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt
    Department of Electrical Power and Machines Engineering, Faculty of Engineering, Tanta University, Tanta 31511, Egypt)

  • Moanis Khedr

    (Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, UK)

  • Wenjuan Song

    (James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK)

  • Ibrahim Alsaleh

    (Department of Electrical Engineering, College of Engineering, University of Ha’il, Ha’il 55476, Saudi Arabia)

  • Abdullah Albaker

    (Department of Electrical Engineering, College of Engineering, University of Ha’il, Ha’il 55476, Saudi Arabia)

  • Mansoor Alturki

    (Department of Electrical Engineering, College of Engineering, University of Ha’il, Ha’il 55476, Saudi Arabia)

  • Xianwu Zeng

    (Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK)

Abstract

Utilizing renewable energy sources (RESs) to their full potential provides an opportunity for lowering carbon emissions and reaching a state of carbon neutrality. DC transmission lines have considerable potential for the integration of RESs. However, faults in DC transmission lines are challenging due to the lack of zero-crossing, large fault current magnitudes and a short rise time. This research proposes using a superconducting fault current limiter (SFCL) for effective current limitation in PV-based DC systems. To properly design an SFCL, the present work investigates the effect of copper stabilizer thickness on SFCL performance by using an accurate multilayer thermoelectric model. In the MATLAB/Simulink platform, the SFCL has been modeled and tested using different copper stabilizer thicknesses to demonstrate the effectiveness of the SFCL model in limiting the fault current and the impact of the copper stabilizer thickness on the SFCL’s performance. In total, four different thicknesses of the copper stabilizer were considered, ranging from 10 μm to 80 μm. The current limitation and voltage profile for each thickness were evaluated and compared with that without an SFCL. The developed resistance and temperature profiles were obtained for various thicknesses to clarify the mechanisms behind the stabilizer-thickness impact. An SFCL with an 80 µm copper stabilizer can reduce the fault current to 5.48 kA, representing 71.16% of the prospective current. In contrast, the fault current was reduced to 27.4% of the prospective current (2.11 kA) when using a 10 µm copper stabilizer.

Suggested Citation

  • Hamoud Alafnan & Xiaoze Pei & Diaa-Eldin A. Mansour & Moanis Khedr & Wenjuan Song & Ibrahim Alsaleh & Abdullah Albaker & Mansoor Alturki & Xianwu Zeng, 2023. "Impact of Copper Stabilizer Thickness on SFCL Performance with PV-Based DC Systems Using a Multilayer Thermoelectric Model," Sustainability, MDPI, vol. 15(9), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7372-:d:1135814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7372/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7372/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dongdong Song & Haitian Pei & Yuewen Liu & Haiyong Wei & Shengfu Yang & Shougeng Hu, 2022. "Review on Legislative System of Photovoltaic Industry Development in China," Energies, MDPI, vol. 15(1), pages 1-15, January.
    2. Gul Ahmad Ludin & Akito Nakadomari & Atsushi Yona & Suresh Mikkili & Shriram Srinivasarangan Rangarajan & Edward Randolph Collins & Tomonobu Senjyu, 2022. "Technical and Economic Analysis of an HVDC Transmission System for Renewable Energy Connection in Afghanistan," Sustainability, MDPI, vol. 14(3), pages 1-19, January.
    3. Tholkappiyan Ramachandran & Abdel-Hamid I. Mourad & Fathalla Hamed, 2022. "A Review on Solar Energy Utilization and Projects: Development in and around the UAE," Energies, MDPI, vol. 15(10), pages 1-27, May.
    4. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    5. Ricardo A. Marques Lameirinhas & João Paulo N. Torres & João P. de Melo Cunha, 2022. "A Photovoltaic Technology Review: History, Fundamentals and Applications," Energies, MDPI, vol. 15(5), pages 1-44, March.
    6. Roland Ryndzionek & Łukasz Sienkiewicz, 2020. "Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems," Energies, MDPI, vol. 13(8), pages 1-17, April.
    7. Hamoud Alafnan & Xiaoze Pei & Moanis Khedr & Ibrahim Alsaleh & Abdullah Albaker & Mansoor Alturki & Diaa-Eldin A. Mansour, 2023. "The Possibility of Using Superconducting Magnetic Energy Storage/Battery Hybrid Energy Storage Systems Instead of Generators as Backup Power Sources for Electric Aircraft," Sustainability, MDPI, vol. 15(3), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
    2. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. David Drysdale & Brian Vad Mathiesen & Henrik Lund, 2019. "From Carbon Calculators to Energy System Analysis in Cities," Energies, MDPI, vol. 12(12), pages 1-21, June.
    5. Leonard Goke & Jens Weibezahn & Christian von Hirschhausen, 2021. "A collective blueprint, not a crystal ball: How expectations and participation shape long-term energy scenarios," Papers 2112.04821, arXiv.org, revised Dec 2022.
    6. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    7. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    9. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    10. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    11. Uchechi Ukaegbu & Lagouge Tartibu & C. W. Lim, 2024. "Optimization of Solar-Assisted CCHP Systems: Enhancing Efficiency and Reducing Emissions Through Harris Hawks-Based Mathematical Modeling," Sustainability, MDPI, vol. 16(23), pages 1-21, December.
    12. Leyla Zafari & Yuan Liu & Abhisek Ukil & Nirmal-Kumar C. Nair, 2025. "Advances in HVDC Systems: Aspects, Principles, and a Comprehensive Review of Signal Processing Techniques for Fault Detection," Energies, MDPI, vol. 18(12), pages 1-37, June.
    13. Jiang, Mengxiang & Fan, Huanbao & Kang, Da & Shi, Zhengwei & Wang, Weilai & Qu, Daozhi & Yu, Jingze & Qiu, Tian, 2025. "Thermal inertia and stress of steam separator during variable load process based on fluid-structure-heat coupling," Energy, Elsevier, vol. 322(C).
    14. Auguadra, Marco & Ribó-Pérez, David & Gómez-Navarro, Tomás, 2023. "Planning the deployment of energy storage systems to integrate high shares of renewables: The Spain case study," Energy, Elsevier, vol. 264(C).
    15. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    16. Haas, Jannik & Prieto-Miranda, Luis & Ghorbani, Narges & Breyer, Christian, 2022. "Revisiting the potential of pumped-hydro energy storage: A method to detect economically attractive sites," Renewable Energy, Elsevier, vol. 181(C), pages 182-193.
    17. Ali Darudi & Hannes Weigt, 2024. "Review and Assessment of Decarbonized Future Electricity Markets," Energies, MDPI, vol. 17(18), pages 1-38, September.
    18. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    19. Zubi, Ghassan & Kuhn, Maximilian & Makridis, Sofoklis & Coutinho, Savio & Dorasamy, Stanley, 2025. "Aviation sector decarbonization within the hydrogen economy – A UAE case study," Energy Policy, Elsevier, vol. 198(C).
    20. Kemfert, Claudia & Präger, Fabian & Braunger, Isabell & Hoffart, Franziska M. & Brauers, Hanna, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 582-587.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7372-:d:1135814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.