IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p7016-d1129653.html
   My bibliography  Save this article

Optimization of State of the Art Fuzzy-Based Machine Learning Techniques for Total Dissolved Solids Prediction

Author

Listed:
  • Mohammad Hijji

    (Faculty of Computers and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia)

  • Tzu-Chia Chen

    (College of Management and Design, Ming Chi University of Technology, New Taipei City 243303, Taiwan)

  • Muhammad Ayaz

    (Sensor Networks and Cellular Systems (SNCS) Research Center, University of Tabuk, Tabuk 71491, Saudi Arabia)

  • Ali S. Abosinnee

    (Quality Assurance Department, Altoosi University College, Najaf, Iraq
    Quality Assurance Department, The Islamic University, Najaf, Iraq)

  • Iskandar Muda

    (Department of Doctoral Program, Faculty Economic and Business, Universitas Sumatera Utara, Medan 20222, Indonesia)

  • Yury Razoumny

    (Department of Mechanics and Control Processes, Academy of Engineering, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, Moscow 117198, Russia)

  • Javad Hatamiafkoueieh

    (Department of Mechanics and Control Processes, Academy of Engineering, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, Moscow 117198, Russia)

Abstract

Total dissolved solid prediction is an important factor which can support the early warning of water pollution, especially in the areas exposed to a mixture of pollutants. In this study, a new fuzzy-based intelligent system was developed, due to the uncertainty of the TDS time series data, by integrating optimization algorithms. Monthly-timescale water quality parameters data from nearly four decades (1974–2016), recorded over two gaging stations in coastal Iran, were used for the analysis. For model implementation, the current research aims to model the TDS parameter in a river system by using relevant biochemical parameters such as Ca, Mg, Na, and HCO 3 . To produce more compact networks along with the model’s generalization, a hybrid model which integrates a fuzzy-based intelligent system with the grasshopper optimization algorithm, NF-GMDH-GOA, is proposed for the prediction of the monthly TDS, and the prediction results are compared with five standalone and hybrid machine learning techniques. Results show that the proposed integrated NF-GMDH-GOA was able to provide an algorithmically informed simulation (NSE = 0.970 for Rig-Cheshmeh and NSE = 0.94 Soleyman Tangeh) of the dynamics of TDS records comparable to the artificial neural network, extreme learning machine, adaptive neuro fuzzy inference system, GMDH, and NF-GMDH-PSO models. According to the results of sensitivity analysis, Sodium in natural bodies of water with maximum value of error (RMSE = 56.4) had the highest influence on the TDS prediction for both stations, and Mg with RMSE = 43.251 stood second. The results of the Wilcoxon signed rank tests also indicated that the model’s prediction means were different, as the p value calculated for the models was less than the standard significance level ( α = 0.05 ).

Suggested Citation

  • Mohammad Hijji & Tzu-Chia Chen & Muhammad Ayaz & Ali S. Abosinnee & Iskandar Muda & Yury Razoumny & Javad Hatamiafkoueieh, 2023. "Optimization of State of the Art Fuzzy-Based Machine Learning Techniques for Total Dissolved Solids Prediction," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:7016-:d:1129653
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/7016/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/7016/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Majid Dehghani & Hossein Riahi-Madvar & Farhad Hooshyaripor & Amir Mosavi & Shahaboddin Shamshirband & Edmundas Kazimieras Zavadskas & Kwok-wing Chau, 2019. "Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 12(2), pages 1-20, January.
    2. Vahid Moosavi & Ali Talebi & Mohammad Reza Hadian, 2017. "Development of a Hybrid Wavelet Packet- Group Method of Data Handling (WPGMDH) Model for Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 43-59, January.
    3. Pang, Zhihong & Niu, Fuxin & O’Neill, Zheng, 2020. "Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons," Renewable Energy, Elsevier, vol. 156(C), pages 279-289.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaxin Yu & Jun Wang, 2020. "Optimization Design of a Rain-Power Utilization System Based on a Siphon and Its Application in a High-Rise Building," Energies, MDPI, vol. 13(18), pages 1-18, September.
    2. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    3. Diaa Salman & Mehmet Kusaf, 2021. "Short-Term Unit Commitment by Using Machine Learning to Cover the Uncertainty of Wind Power Forecasting," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    4. Kong, Xiangfei & Du, Xinyu & Xue, Guixiang & Xu, Zhijie, 2023. "Multi-step short-term solar radiation prediction based on empirical mode decomposition and gated recurrent unit optimized via an attention mechanism," Energy, Elsevier, vol. 282(C).
    5. Kaloop, Mosbeh R. & Bardhan, Abidhan & Kardani, Navid & Samui, Pijush & Hu, Jong Wan & Ramzy, Ahmed, 2021. "Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    6. Yi Liu & Zhiqiang Jiang & Zhongkai Feng & Yuyun Chen & Hairong Zhang & Ping Chen, 2019. "Optimization of Energy Storage Operation Chart of Cascade Reservoirs with Multi-Year Regulating Reservoir," Energies, MDPI, vol. 12(20), pages 1-20, October.
    7. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    8. Prince Waqas Khan & Yung-Cheol Byun & Sang-Joon Lee & Namje Park, 2020. "Machine Learning Based Hybrid System for Imputation and Efficient Energy Demand Forecasting," Energies, MDPI, vol. 13(11), pages 1-23, May.
    9. Thilker, Christian Ankerstjerne & Madsen, Henrik & Jørgensen, John Bagterp, 2021. "Advanced forecasting and disturbance modelling for model predictive control of smart energy systems," Applied Energy, Elsevier, vol. 292(C).
    10. Marcos Geraldo Gomes & Victor Hugo Carlquist da Silva & Luiz Fernando Rodrigues Pinto & Plinio Centoamore & Salvatore Digiesi & Francesco Facchini & Geraldo Cardoso de Oliveira Neto, 2020. "Economic, Environmental and Social Gains of the Implementation of Artificial Intelligence at Dam Operations toward Industry 4.0 Principles," Sustainability, MDPI, vol. 12(9), pages 1-19, April.
    11. Julio Barzola-Monteses & Mónica Mite-León & Mayken Espinoza-Andaluz & Juan Gómez-Romero & Waldo Fajardo, 2019. "Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
    12. Shahaboddin Shamshirband & Masoud Hadipoor & Alireza Baghban & Amir Mosavi & Jozsef Bukor & Annamária R. Várkonyi-Kóczy, 2019. "Developing an ANFIS-PSO Model to Predict Mercury Emissions in Combustion Flue Gases," Mathematics, MDPI, vol. 7(10), pages 1-16, October.
    13. Rizwan Raheem Ahmed & Dalia Streimikiene & Zahid Ali Channar & Hassan Abbas Soomro & Justas Streimikis & Grigorios L. Kyriakopoulos, 2022. "The Neuromarketing Concept in Artificial Neural Networks: A Case of Forecasting and Simulation from the Advertising Industry," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    14. Saeed Nosratabadi & Amir Mosavi & Shahaboddin Shamshirband & Edmundas Kazimieras Zavadskas & Andry Rakotonirainy & Kwok Wing Chau, 2019. "Sustainable Business Models: A Review," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    15. Tang, Zhenhao & Wang, Shikui & Chai, Xiangying & Cao, Shengxian & Ouyang, Tinghui & Li, Yang, 2022. "Auto-encoder-extreme learning machine model for boiler NOx emission concentration prediction," Energy, Elsevier, vol. 256(C).
    16. Vahid Moosavi & Ayoob Karami & Negin Behnia & Ronny Berndtsson & Christian Massari, 2022. "Linking Hydro-Physical Variables and Landscape Metrics using Advanced Data Mining for Stream-Flow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4255-4273, September.
    17. Guijo-Rubio, D. & Durán-Rosal, A.M. & Gutiérrez, P.A. & Gómez-Orellana, A.M. & Casanova-Mateo, C. & Sanz-Justo, J. & Salcedo-Sanz, S. & Hervás-Martínez, C., 2020. "Evolutionary artificial neural networks for accurate solar radiation prediction," Energy, Elsevier, vol. 210(C).
    18. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    19. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    20. Noman Khan & Fath U Min Ullah & Ijaz Ul Haq & Samee Ullah Khan & Mi Young Lee & Sung Wook Baik, 2021. "AB-Net: A Novel Deep Learning Assisted Framework for Renewable Energy Generation Forecasting," Mathematics, MDPI, vol. 9(19), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:7016-:d:1129653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.