IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i2p289-d198716.html
   My bibliography  Save this article

Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System

Author

Listed:
  • Majid Dehghani

    (Technical and Engineering Department, Faculty of Civil Engineering, Vali-e-Asr University of Rafsanjan, P.O. Box 518, Rafsanjan 7718897111, Iran)

  • Hossein Riahi-Madvar

    (College of Agriculture, Vali-e-Asr University of Rafsanjan, P.O. Box 518, Rafsanjan 7718897111, Iran)

  • Farhad Hooshyaripor

    (Technical and Engineering Department, Science and Research, Branch, Islamic Azad University, Tehran 1477893855, Iran)

  • Amir Mosavi

    (Institute of Automation, Kando Kalman Faculty of Electrical Engineering, Obuda University, 1034 Budapest, Hungary
    School of the Built Environment, Oxford Brookes University, Oxford OX3 0BP, UK)

  • Shahaboddin Shamshirband

    (Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
    Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam)

  • Edmundas Kazimieras Zavadskas

    (Institute of Sustainable Construction, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania)

  • Kwok-wing Chau

    (Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China)

Abstract

Hydropower is among the cleanest sources of energy. However, the rate of hydropower generation is profoundly affected by the inflow to the dam reservoirs. In this study, the Grey wolf optimization (GWO) method coupled with an adaptive neuro-fuzzy inference system (ANFIS) to forecast the hydropower generation. For this purpose, the Dez basin average of rainfall was calculated using Thiessen polygons. Twenty input combinations, including the inflow to the dam, the rainfall and the hydropower in the previous months were used, while the output in all the scenarios was one month of hydropower generation. Then, the coupled model was used to forecast the hydropower generation. Results indicated that the method was promising. GWO-ANFIS was capable of predicting the hydropower generation satisfactorily, while the ANFIS failed in nine input-output combinations.

Suggested Citation

  • Majid Dehghani & Hossein Riahi-Madvar & Farhad Hooshyaripor & Amir Mosavi & Shahaboddin Shamshirband & Edmundas Kazimieras Zavadskas & Kwok-wing Chau, 2019. "Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 12(2), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:289-:d:198716
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/2/289/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/2/289/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Behrooz Keshtegar & Mohammed Falah Allawi & Haitham Abdulmohsin Afan & Ahmed El-Shafie, 2016. "Optimized River Stream-Flow Forecasting Model Utilizing High-Order Response Surface Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3899-3914, September.
    2. Ozgur Kisi & Jalal Shiri, 2011. "Precipitation Forecasting Using Wavelet-Genetic Programming and Wavelet-Neuro-Fuzzy Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3135-3152, October.
    3. Guolei Tang & Huicheng Zhou & Ningning Li & Feng Wang & Yajun Wang & Deping Jian, 2010. "Value of Medium-range Precipitation Forecasts in Inflow Prediction and Hydropower Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2721-2742, September.
    4. Yong Peng & Wei Xu & Bingbing Liu, 2017. "Considering precipitation forecasts for real-time decision-making in hydropower operations," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 33(6), pages 987-1002, November.
    5. Jiang, Zhiqiang & Li, Rongbo & Li, Anqiang & Ji, Changming, 2018. "Runoff forecast uncertainty considered load adjustment model of cascade hydropower stations and its application," Energy, Elsevier, vol. 158(C), pages 693-708.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalia Walczak & Zbigniew Walczak & Tomasz Tymiński, 2022. "Laboratory Research on Hydraulic Losses on SHP Inlet Channel Trash Racks," Energies, MDPI, vol. 15(20), pages 1-18, October.
    2. Lei, Kaixuan & Chang, Jianxia & Long, Ruihao & Wang, Yimin & Zhang, Hongxue, 2022. "Cascade hydropower station risk operation under the condition of inflow uncertainty," Energy, Elsevier, vol. 244(PA).
    3. Qiao-feng Tan & Guo-hua Fang & Xin Wen & Xiao-hui Lei & Xu Wang & Chao Wang & Yi Ji, 2020. "Bayesian Stochastic Dynamic Programming for Hydropower Generation Operation Based on Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1589-1607, March.
    4. Gong, Bin & An, Aimin & Shi, Yaoke & Guan, Haijiao & Jia, Wenchao & Yang, Fazhi, 2024. "An interpretable hybrid spatiotemporal fusion method for ultra-short-term photovoltaic power prediction," Energy, Elsevier, vol. 308(C).
    5. Keshtegar, Behrooz & Mert, Cihan & Kisi, Ozgur, 2018. "Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 330-341.
    6. Liping Li & Pan Liu & David Rheinheimer & Chao Deng & Yanlai Zhou, 2014. "Identifying Explicit Formulation of Operating Rules for Multi-Reservoir Systems Using Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1545-1565, April.
    7. Oke, Doris & Mukherjee, Rajib & Sengupta, Debalina & Majozi, Thokozani & El-Halwagi, Mahmoud, 2020. "On the optimization of water-energy nexus in shale gas network under price uncertainties," Energy, Elsevier, vol. 203(C).
    8. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    9. Zhang, Qianxiao & Shah, Syed Ale Raza & Yang, Ling, 2022. "Modeling the effect of disaggregated renewable energies on ecological footprint in E5 economies: Do economic growth and R&D matter?," Applied Energy, Elsevier, vol. 310(C).
    10. Vahid Moosavi & Mehdi Vafakhah & Bagher Shirmohammadi & Negin Behnia, 2013. "A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1301-1321, March.
    11. Müller, Danny & Knoll, Christian & Gravogl, Georg & Jordan, Christian & Eitenberger, Elisabeth & Friedbacher, Gernot & Artner, Werner & Welch, Jan M. & Werner, Andreas & Harasek, Michael & Miletich, R, 2021. "Medium-temperature thermochemical energy storage with transition metal ammoniates – A systematic material comparison," Applied Energy, Elsevier, vol. 285(C).
    12. Liu, Yuan & Ji, Changming & Wang, Yi & Zhang, Yanke & Jiang, Zhiqiang & Ma, Qiumei & Hou, Xiaoning, 2023. "Effect of the quality of streamflow forecasts on the operation of cascade hydropower stations using stochastic optimization models," Energy, Elsevier, vol. 273(C).
    13. He, Feifei & Zhou, Jianzhong & Feng, Zhong-kai & Liu, Guangbiao & Yang, Yuqi, 2019. "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm," Applied Energy, Elsevier, vol. 237(C), pages 103-116.
    14. Özbek, Sefa & Naimoğlu, Mustafa, 2025. "The effectiveness of renewable energy technology under the EKC hypothesis and the impact of fossil and nuclear energy investments on the UK's Ecological Footprint," Energy, Elsevier, vol. 322(C).
    15. Rajeev Sahay & Ayush Srivastava, 2014. "Predicting Monsoon Floods in Rivers Embedding Wavelet Transform, Genetic Algorithm and Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 301-317, January.
    16. Ataee, Sadegh & Ameri, Mehran & Askari, Ighball Baniasad & Keshtegar, Behrooz, 2024. "Evaluation and intelligent forecasting of energy and exergy efficiencies of a nanofluid-based filled-type U-pipe solar ETC using three machine learning approaches," Energy, Elsevier, vol. 298(C).
    17. Cheng, Wenjie & Zhao, Zhipeng & Cheng, Chuntian & Yu, Zhihui & Gao, Ying, 2024. "Optimizing peak shaving operation in hydro-dominated hybrid power systems with limited distributional information on renewable energy uncertainty," Renewable Energy, Elsevier, vol. 237(PC).
    18. Shi, Shuanhu & Li, Peng & Jin, Feng, 2019. "Thermal-mechanical-electrical analysis of a nano-scaled energy harvester," Energy, Elsevier, vol. 185(C), pages 862-874.
    19. Przychodzen, Wojciech & Przychodzen, Justyna, 2020. "Determinants of renewable energy production in transition economies: A panel data approach," Energy, Elsevier, vol. 191(C).
    20. Zhiqiang Jiang & Yaqi Qiao & Yuyun Chen & Changming Ji, 2018. "A New Reservoir Operation Chart Drawing Method Based on Dynamic Programming," Energies, MDPI, vol. 11(12), pages 1-17, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:289-:d:198716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.