IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6767-d1125686.html
   My bibliography  Save this article

Research on the Sustainable Development Path of Regional Economy Based on CO 2 Reduction Policy

Author

Listed:
  • Ju Qiu

    (Applied Technology College, Shenyang University, Shenyang 110021, China)

  • Shumei Wang

    (Applied Technology College, Shenyang University, Shenyang 110021, China)

  • Meihua Lian

    (School of Environment and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China)

Abstract

With the rapid growth of China’s economic growth, a large number of greenhouse gas emissions have led to a significant increase in environmental pressure. Currently, China has not yet achieved a good balance between greenhouse gas emissions and economic growth. To improve the sustainable development of China’s regional economy and effectively control domestic CO 2 emissions, research is conducted to analyze the trend of regional economic change based on carbon emission policies. This study looks for suitable paths to achieve sustainable development of the regional economy. In this study, CO 2 emissions were incorporated into an economic model to calculate the Green Total Factor Productivity (GTFP) efficiency value and its growth rate in each region of China. This was done to examine the productivity of each region in China. and it also aims to discuss the driving factors behind it, so as to give relevant policy suggestions that can help China’s sustainable economic development. The ultimate goal is to achieve sustainable RE development. The method used to measure the GTFP efficiency was the slacks-based measure (SBM) based on the data envelopment analysis (DEA) technique. The regression analysis of the relevant drivers was based on the regression analysis of the panel data model. The research results show that the level of urbanization and industrial structure were the main influencing factors for the increase of CO 2 emissions. Consequently, macro-regulation can appropriately reduce CO 2 emissions. In addition, the implementation of carbon emission reduction policies such as industrial structure optimization, education investment, and market-oriented reform also promote the sustainable development of the regional economy. Therefore, appropriate carbon emission reduction policies can improve the level of sustainable development of the regional economy. It also can ensure the stability of the regional environmental level.

Suggested Citation

  • Ju Qiu & Shumei Wang & Meihua Lian, 2023. "Research on the Sustainable Development Path of Regional Economy Based on CO 2 Reduction Policy," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6767-:d:1125686
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, YongPing & Xue, JinJun & Shi, XunPeng & Wang, KeYing & Qi, ShaoZhou & Wang, Lei & Wang, Cheng, 2019. "A dynamic and continuous allowances allocation methodology for the prevention of carbon leakage: Emission control coefficients," Applied Energy, Elsevier, vol. 236(C), pages 220-230.
    2. Hashem Omrani & Mohaddeseh Amini & Mahdieh Babaei & Khatereh Shafaat, 2020. "Use Shapley value for increasing power distinguish of data envelopment analysis model: An application for estimating environmental efficiency of industrial producers in Iran," Energy & Environment, , vol. 31(4), pages 656-675, June.
    3. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    4. Chen, Han & Chen, Wenying, 2019. "Potential impacts of coal substitution policy on regional air pollutants and carbon emission reductions for China's building sector during the 13th Five-Year Plan period," Energy Policy, Elsevier, vol. 131(C), pages 281-294.
    5. Emodi, Nnaemeka Vincent & Chaiechi, Taha & Alam Beg, A.B.M. Rabiul, 2019. "Are emission reduction policies effective under climate change conditions? A backcasting and exploratory scenario approach using the LEAP-OSeMOSYS Model," Applied Energy, Elsevier, vol. 236(C), pages 1183-1217.
    6. Min Yang & Qingxian An & Tao Ding & Pengzhen Yin & Liang Liang, 2019. "Carbon emission allocation in China based on gradually efficiency improvement and emission reduction planning principle," Annals of Operations Research, Springer, vol. 278(1), pages 123-139, July.
    7. Meiling Wang & Silu Pang & Ikram Hmani & Ilham Hmani & Cunfang Li & Zhengxia He, 2021. "Towards sustainable development: How does technological innovation drive the increase in green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 217-227, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaowan Yang & Xiaoyu Guo & Yanan Wang, 2023. "Characteristics of Carbon Emission Transfer under Carbon Neutrality and Carbon Peaking Background and the Impact of Environmental Policies and Regulations on It," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
    2. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    3. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    4. Haiyang Shang & Fang Su & Serhat Yüksel & Hasan Dinçer, 2021. "Identifying the Strategic Priorities of the Technical Factors for the Sustainable Low Carbon Industry Based on Macroeconomic Conditions," SAGE Open, , vol. 11(2), pages 21582440211, May.
    5. Raza, Muhammad Amir & Khatri, Krishan Lal & Hussain, Arslan, 2022. "Transition from fossilized to defossilized energy system in Pakistan," Renewable Energy, Elsevier, vol. 190(C), pages 19-29.
    6. Zhang, Yali & Li, Wenqi & Wu, Feng, 2020. "Does energy transition improve air quality? Evidence derived from China’s Winter Clean Heating Pilot (WCHP) project," Energy, Elsevier, vol. 206(C).
    7. Huo, Tengfei & Du, Qianxi & Xu, Linbo & Shi, Qingwei & Cong, Xiaobo & Cai, Weiguang, 2023. "Timetable and roadmap for achieving carbon peak and carbon neutrality of China's building sector," Energy, Elsevier, vol. 274(C).
    8. Pongsapak Chindasombatcharoen & Pattanaporn Chatjuthamard & Pornsit Jiraporn & Sirimon Treepongkaruna, 2022. "Achieving sustainable development goals through board size and innovation," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 664-677, August.
    9. Cui, Jingbo & Liu, Xi & Sun, Yongping & Yu, Haishan, 2020. "Can CDM projects trigger host countries’ innovation in renewable energy? Evidence of firm-level dataset from China," Energy Policy, Elsevier, vol. 139(C).
    10. Bin Zhang & Qingyao Xin & Min Tang & Niu Niu & Heran Du & Xiqiang Chang & Zhaohua Wang, 2022. "Revenue allocation for interfirm collaboration on carbon emission reduction: complete information in a big data context," Annals of Operations Research, Springer, vol. 316(1), pages 93-116, September.
    11. Huang, Zhi-xiong & Yang, Xiandong, 2021. "Carbon emissions and firm innovation," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 503-513.
    12. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    13. Gu, Haifei & Li, Yang & Yu, Jie & Wu, Chen & Song, Tianli & Xu, Jinzhou, 2020. "Bi-level optimal low-carbon economic dispatch for an industrial park with consideration of multi-energy price incentives," Applied Energy, Elsevier, vol. 262(C).
    14. Yuxin Fang & Hongjun Cao & Jihui Sun, 2022. "Impact of Artificial Intelligence on Regional Green Development under China’s Environmental Decentralization System—Based on Spatial Durbin Model and Threshold Effect," IJERPH, MDPI, vol. 19(22), pages 1-27, November.
    15. Adela Bâra & Simona-Vasilica Oprea & Niculae Oprea, 2023. "How Fast to Avoid Carbon Emissions: A Holistic View on the RES, Storage and Non-RES Replacement in Romania," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    16. Jiasen Sun & Guo Li, 2022. "Optimizing emission reduction task sharing: technology and performance perspectives," Annals of Operations Research, Springer, vol. 316(1), pages 581-602, September.
    17. Chen, Xiuzhi & Liu, Chang & van Oel, Pieter & Mergia Mekonnen, Mesfin & Thorp, Kelly R. & Yin, Tuo & Wang, Jinyan & Muhammad, Tahir & Li, Yunkai, 2022. "Water and carbon risks within hydropower development on national scale," Applied Energy, Elsevier, vol. 325(C).
    18. Li, Xiaoyu & Zeng, Zhao & Zhang, Zengkai & Yao, Ye & Du, Huibin, 2023. "The rising North-South carbon flows within China from 2012 to 2017," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 263-272.
    19. Wen, Shiyan & Jia, Zhijie, 2022. "The energy, environment and economy impact of coal resource tax, renewable investment, and total factor productivity growth," Resources Policy, Elsevier, vol. 77(C).
    20. Chai, Shanglei & Yang, Xiaoli & Zhang, Zhen & Abedin, Mohammad Zoynul & Lucey, Brian, 2022. "Regional imbalances of market efficiency in China’s pilot emission trading schemes (ETS): A multifractal perspective," Research in International Business and Finance, Elsevier, vol. 63(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6767-:d:1125686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.