IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6408-d1119239.html
   My bibliography  Save this article

Prediction of the Form of a Hardened Metal Workpiece during the Straightening Process

Author

Listed:
  • Tadej Peršak

    (Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia)

  • Jernej Hernavs

    (Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia)

  • Tomaž Vuherer

    (Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia)

  • Aleš Belšak

    (Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia)

  • Simon Klančnik

    (Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia)

Abstract

In industry, metal workpieces are often heat-treated to improve their mechanical properties, which leads to unwanted deformations and changes in their geometry. Due to their high hardness (60 HRC or more), conventional bending and rolling straightening approaches are not effective, as a failure of the material occurs. The aim of the research was to develop a predictive model that predicts the change in the form of a hardened workpiece as a function of the arbitrary set of strikes that deform the surface plastically. A large-scale laboratory experiment was carried out in which a database of 3063 samples was prepared, based on the controlled application of plastic deformations on the surface of the workpiece and high-resolution capture of the workpiece geometry. The different types of input data, describing, on the one hand, the performed plastic surface deformations on the workpieces, and on the other hand the point cloud of the workpiece geometry, were combined appropriately into a form that is a suitable input for a U-Net convolutional neural network. The U-Net model’s performance was investigated using three statistical indicators. These indicators were: relative absolute error (RAE), root mean squared error (RMSE), and relative squared error (RSE). The results showed that the model had excellent prediction performance, with the mean values of RMSE less than 0.013, RAE less than 0.05, and RSE less than 0.004 on test data. Based on the results, we concluded that the proposed model could be a useful tool for designing an optimal straightening strategy for high-hardness metal workpieces. Our results will open the doors to implementing digital sustainability techniques, since more efficient handling will result in fewer subsequent heat treatments and shorter handling times. An important goal of digital sustainability is to reduce electricity consumption in production, which this approach will certainly do.

Suggested Citation

  • Tadej Peršak & Jernej Hernavs & Tomaž Vuherer & Aleš Belšak & Simon Klančnik, 2023. "Prediction of the Form of a Hardened Metal Workpiece during the Straightening Process," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6408-:d:1119239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6408/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6408/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Feng & Zhang, Qingzhi & Lei, Jiasu & Fu, Weihui & Xu, Xiaoning, 2013. "Energy efficiency and productivity change of China’s iron and steel industry: Accounting for undesirable outputs," Energy Policy, Elsevier, vol. 54(C), pages 204-213.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun He & Li Wang & Hongliang Zhu & Yulong Ding, 2018. "Energy-Saving Potential of China’s Steel Industry According to Its Development Plan," Energies, MDPI, vol. 11(4), pages 1-16, April.
    2. Zhuang Miao & Tomas Baležentis & Zhihua Tian & Shuai Shao & Yong Geng & Rui Wu, 2019. "Environmental Performance and Regulation Effect of China’s Atmospheric Pollutant Emissions: Evidence from “Three Regions and Ten Urban Agglomerations”," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(1), pages 211-242, September.
    3. Xuan, Yanni & Yue, Qiang, 2017. "Scenario analysis on resource and environmental benefits of imported steel scrap for China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 186-198.
    4. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    5. Stergiou, Eirini & Rigas, Nikos & Kounetas, Konstantinos, 2021. "Environmental Productivity and Convergence of European Manufacturing Industries. Are they Under Pressure?," MPRA Paper 110780, University Library of Munich, Germany.
    6. Zhou, Kaile & Yang, Shanlin, 2016. "Emission reduction of China׳s steel industry: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 319-327.
    7. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2019. "The sustainability of China’s metal industries: features, challenges and future focuses," Resources Policy, Elsevier, vol. 60(C), pages 215-224.
    8. Juan Aparicio & Javier Barbero & Magdalena Kapelko & Jesus T. Pastor & Jose L. Zofio, 2016. "Environmental Productivity Change in World Air Emissions: A new Malmquist-Luenberger Index Approach," JRC Research Reports JRC104083, Joint Research Centre.
    9. Kim, Nam Hyok & He, Feng & Kwon, O Chol, 2023. "Combining common-weights DEA window with the Malmquist index: A case of China’s iron and steel industry," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    10. Jiao, Yuanqi & Chen, Qiyun & Wu, Yunhui & Ji, Chuanwei & Zhang, Ni & Luo, Hongbin & Zhang, Kewei, 2024. "Designing new environmental policy instruments to promote the sustainable development of iron and steel production in China: A comparative analysis of cleaner production assessment indicator systems a," Resources Policy, Elsevier, vol. 96(C).
    11. Ouyang, Xiaoling & Chen, Jiaqi & Du, Kerui, 2021. "Energy efficiency performance of the industrial sector: From the perspective of technological gap in different regions in China," Energy, Elsevier, vol. 214(C).
    12. Yulia V. Vertakova & Vladimir A. Plotnikov, 2019. "The Integrated Approach to Sustainable Development: The Case of Energy Efficiency and Solid Waste Management," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 194-201.
    13. Xiaobo Shen & Boqiang Lin, 2017. "Total Factor Energy Efficiency of China’s Industrial Sector: A Stochastic Frontier Analysis," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    14. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    15. Gao, Kang & Yuan, Yijun, 2022. "Spatiotemporal pattern assessment of China’s industrial green productivity and its spatial drivers: Evidence from city-level data over 2000–2017," Applied Energy, Elsevier, vol. 307(C).
    16. Wang, Yan & Shen, Neng, 2016. "Environmental regulation and environmental productivity: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 758-766.
    17. Zhang, Dongyang, 2021. "Marketization, environmental regulation, and eco-friendly productivity: A Malmquist–Luenberger index for pollution emissions of large Chinese firms," Journal of Asian Economics, Elsevier, vol. 76(C).
    18. Boussemart, Jean-Philippe & Leleu, Hervé & Shen, Zhiyang, 2017. "Worldwide carbon shadow prices during 1990–2011," Energy Policy, Elsevier, vol. 109(C), pages 288-296.
    19. Ma, Ding & Chen, Wenying & Yin, Xiang & Wang, Lining, 2016. "Quantifying the co-benefits of decarbonisation in China’s steel sector: An integrated assessment approach," Applied Energy, Elsevier, vol. 162(C), pages 1225-1237.
    20. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6408-:d:1119239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.