IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6360-d1118284.html
   My bibliography  Save this article

Study on Water Quality Change Trend and Its Influencing Factors from 2001 to 2021 in Zuli River Basin in the Northwestern Part of the Loess Plateau, China

Author

Listed:
  • Zhenghong Zhang

    (Forestry College of Gansu Agricultural University, Lanzhou 730070, China)

  • Fu Zhang

    (Forestry College of Gansu Agricultural University, Lanzhou 730070, China)

  • Zhengzhong Zhang

    (Forestry College of Gansu Agricultural University, Lanzhou 730070, China)

  • Xuhu Wang

    (Forestry College of Gansu Agricultural University, Lanzhou 730070, China)

Abstract

The Zuli River is in the northwest of the Loess Plateau. As an important center of production and domestic water source, variations in the water quality of this basin and their influencing factors are important considerations for improving the river water environment. In order to identify and predict changes in the water quality of the watershed, the following water quality indicators, namely, dissolved oxygen content (DO), five-day biological oxygen demand (BOD 5 ), ammonia nitrogen concentration (NH 3 -N), the high-manganese salt index (COD Mn ), volatile phenol concentration (VP), total phosphorus (TP), fluoride concentration (F − ), and nitrite nitrogen concentration (NO 3 -N), were studied together with their change trends, influencing factors, and main variation cycles in the basin from 2001 to 2021. The results were as follows: (1) All the water quality indicators except for DO and F- showed an increasing trend before 2011, and DO showed an extreme, significant downward trend. There was an increase in the content of pollutants in the water caused by chemical fertilizer and aquaculture, resulting in a decrease in the DO content. (2) There was an extreme, significant upward trend in DO after 2011, while a significant downward trend was observed in the other water quality indicators except for NO 3 -N. (3) According to the main variation cycle of the other water quality indicators, the DO will remain in its peak period, while the other water quality indicators except for NO 3 -N will remain in a trough period (which began in 2021). The increase in precipitation and runoff reduced the content of pollutants in the water. Therefore, the overall water quality of the Zuli River Basin gradually improved after 2011. This may be due to (1) increased precipitation and runoff, thereby diluting the concentration of pollutants in the river, or (2) a decreased concentration of pollutants entering the river with the decrease in soil erosion.

Suggested Citation

  • Zhenghong Zhang & Fu Zhang & Zhengzhong Zhang & Xuhu Wang, 2023. "Study on Water Quality Change Trend and Its Influencing Factors from 2001 to 2021 in Zuli River Basin in the Northwestern Part of the Loess Plateau, China," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6360-:d:1118284
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6360/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6360/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Zhang & Lin Zhou & Yuqi Liu, 2018. "Modeling Land Use Changes and their Impacts on Non-Point Source Pollution in a Southeast China Coastal Watershed," IJERPH, MDPI, vol. 15(8), pages 1-15, July.
    2. Stefan Mihai Petrea & Cristina Zamfir & Ira Adeline Simionov & Alina Mogodan & Florian Marcel Nuţă & Adrian Turek Rahoveanu & Dumitru Nancu & Dragos Sebastian Cristea & Florin Marian Buhociu, 2021. "A Forecasting and Prediction Methodology for Improving the Blue Economy Resilience to Climate Change in the Romanian Lower Danube Euroregion," Sustainability, MDPI, vol. 13(21), pages 1-36, October.
    3. Zepei Tang & Jonaé Wood & Dominae Smith & Arjun Thapa & Niroj Aryal, 2021. "A Review on Constructed Treatment Wetlands for Removal of Pollutants in the Agricultural Runoff," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    4. Zhendong Hong & Qinghe Zhao & Jinlong Chang & Li Peng & Shuoqian Wang & Yongyi Hong & Gangjun Liu & Shengyan Ding, 2020. "Evaluation of Water Quality and Heavy Metals in Wetlands along the Yellow River in Henan Province," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    5. Jayash Paudel & Christine L. Crago, 2021. "Environmental Externalities from Agriculture: Evidence from Water Quality in the United States," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(1), pages 185-210, January.
    6. Xuzhao Zhang & Hong Cai & Haomiao Tu, 2023. "Impact of Landscape Pattern on River Water Quality Based on Different Topographic Relief Areas: A Case Study of Chishui River Basin in Southwest China," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    7. Zhao, Zhanqing & Qin, Wei & Bai, Zhaohai & Ma, Lin, 2019. "Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 262-272.
    8. Han, Xinxueqi & Hua, En & Engel, Bernie A. & Guan, Jiajie & Yin, Jieling & Wu, Nan & Sun, Shikun & Wang, Yubao, 2022. "Understanding implications of climate change and socio-economic development for the water-energy-food nexus: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    9. Chenlu Huang & Qinke Yang & Weidong Huang & Junlong Zhang & Yuru Li & Yucen Yang, 2018. "Hydrological Response to Precipitation and Human Activities—A Case Study in the Zuli River Basin, China," IJERPH, MDPI, vol. 15(12), pages 1-18, December.
    10. Xiao, Lu & Liu, Jianyue & Ge, Jinwen, 2021. "Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries," Agricultural Water Management, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    2. Huaibin Wei & Yao Wang & Jing Liu & Yongxiao Cao & Xinyu Zhang, 2023. "Spatiotemporal Variations of Water Eutrophication and Non-Point Source Pollution Prevention and Control in the Main Stream of the Yellow River in Henan Province from 2012 to 2021," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    3. Laima Česonienė & Daiva Šileikienė & Vitas Marozas & Laura Čiteikė, 2021. "Influence of Anthropogenic Loads on Surface Water Status: A Case Study in Lithuania," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
    4. Xinyi Li & Xiong Wang & Xiaoqing Song, 2021. "Impacts of Agricultural Capitalization on Regional Paddy Field Change: A Production-Factor Substitution Perspective," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    5. Chenlu Huang & Juan Xu & Linxin Shan, 2023. "Long-Term Variability of Vegetation Cover and Its Driving Factors and Effects over the Zuli River Basin in Northwest China," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    6. Laima Česonienė & Daiva Šileikienė & Midona Dapkienė, 2021. "Influence of Anthropogenic Load in River Basins on River Water Status: A Case Study in Lithuania," Land, MDPI, vol. 10(12), pages 1-16, November.
    7. Antoci, Angelo & Iannucci, Gianluca & Rocchi, Benedetto & Ticci, Elisa, 2023. "The land allocation game: Externalities and evolutionary competition," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 124-133.
    8. Homayounfar, Mehran & Muneepeerakul, Rachata & Martinez, Christopher J., 2023. "Navigating farming-BMP-policy interplay through a dynamical model," Ecological Economics, Elsevier, vol. 205(C).
    9. Qiangyi Li & Lan Yang & Fangxin Jiang & Yangqing Liu & Chenyang Guo & Shuya Han, 2022. "Distribution Characteristics, Regional Differences and Spatial Convergence of the Water-Energy-Land-Food Nexus: A Case Study of China," Land, MDPI, vol. 11(9), pages 1-28, September.
    10. Lu, Xun & Che, Yuyuan & Rejesus, Roderick M. & Goodwin, Barry K. & Ghosh, Sujit K. & Paudel, Jayash, 2023. "Unintended environmental benefits of crop insurance: Nitrogen and phosphorus in water bodies," Ecological Economics, Elsevier, vol. 204(PA).
    11. Cristian Vasco & Diego Salazar & Darío Cepeda & Gustavo Sevillano & Juan Pazmiño & Shirley Huerta, 2022. "The Socioeconomic Drivers of Ethical Food Consumption in Ecuador: A Quantitative Analysis," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    12. Wen Liu & Long Ma & Yaoming Li & Jilili Abuduwaili & Salamat Abdyzhapar uulu, 2020. "Heavy Metals and Related Human Health Risk Assessment for River Waters in the Issyk−Kul Basin, Kyrgyzstan, Central Asia," IJERPH, MDPI, vol. 17(10), pages 1-13, May.
    13. Liu, Wenlong & Youssef, Mohamed A. & Birgand, François P. & Chescheir, George M. & Tian, Shiying & Maxwell, Bryan M., 2020. "Processes and mechanisms controlling nitrate dynamics in an artificially drained field: Insights from high-frequency water quality measurements," Agricultural Water Management, Elsevier, vol. 232(C).
    14. Nooshin Karimi Alavijeh & Nasrin Salehnia & Narges Salehnia & Matheus Koengkan, 2023. "The effects of agricultural development on CO2 emissions: empirical evidence from the most populous developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 12011-12031, October.
    15. Yiting Zhu & Xueru Pang & Chunshan Zhou & Xiong He, 2022. "Coupling Coordination Degree between the Socioeconomic and Eco-Environmental Benefits of Koktokay Global Geopark in China," IJERPH, MDPI, vol. 19(14), pages 1-25, July.
    16. Guoping Qian & Chang Wang & Xiangbing Gong & Hongyu Zhou & Jun Cai, 2022. "Design of Constructed Wetland Treatment Measures for Highway Runoff in a Water Source Protection Area," Sustainability, MDPI, vol. 14(10), pages 1-12, May.
    17. Maryna Tverdostup & Tiiu Paas & Mariia Chebotareva, 2022. "What Can Support Cross-Border Cooperation in the Blue Economy? Lessons from Blue Sector Performance Analysis in Estonia and Finland," Sustainability, MDPI, vol. 14(3), pages 1-17, February.
    18. Qiang Yao & Na An & Ende Yang & Zhengjiang Song, 2023. "Study on the Progress in Climate-Change-Oriented Human Settlement Research," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    19. Xu, Yuelu & Elbakidze, Levan & Yen, Haw & Arnold, Jeffrey G. & Gassman, Philip W. & Hubbart, Jason & Strager, Michael P., 2022. "Integrated assessment of nitrogen runoff to the Gulf of Mexico," Resource and Energy Economics, Elsevier, vol. 67(C).
    20. Wenzhuo Sun & Zheng Liu, 2023. "Third-Party Governance of Groundwater Ammonia Nitrogen Pollution: An Evolutionary Game Analysis Considering Reward and Punishment Distribution Mechanism and Pollution Rights Trading Policy," Sustainability, MDPI, vol. 15(11), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6360-:d:1118284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.