IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5857-d1109446.html
   My bibliography  Save this article

Prioritization of Waste-to-Energy Technologies Associated with the Utilization of Food Waste

Author

Listed:
  • Patricia Torres-Lozada

    (Study and Control of Environmental Pollution—ECCA Research Group, Faculty of Engineering, Universidad del Valle, Cali 760001, Colombia)

  • Pablo Manyoma-Velásquez

    (Logistic and Production (LOGYPRO) Research Group, Faculty of Engineering, Universidad del Valle, Cali 760001, Colombia)

  • Jenny Fabiana Gaviria-Cuevas

    (Logistic and Production (LOGYPRO) Research Group, Faculty of Engineering, Universidad del Valle, Cali 760001, Colombia)

Abstract

Taking advantage of the growing production of organic waste for its conversion to waste-to-energy (WtE) also contributes to mitigating the problems associated with its final disposal, which is a global trend of increasing application. This work presents an innovative approach for the identification and prioritization of WtE alternatives available from the use of food waste (FW) present in the municipal solid waste (MSW) of a Colombian municipality with source separation and selective collection: (i) a systematic literature review, which allows one to identify WtE alternatives; (ii) the prospective MIC-MAC method (Matrice d’Impacts Croisés Multiplication Appliqués à un Classement) allowed the selection of criteria and sub criteria; (iii) the analytical hierarchical process (AHP) and the technique of order of preference by similarity to the ideal solution (TOPSIS), allowed a ranking of selected alternatives considering the technical, environmental, and social aspects. The WtE technologies identified were anaerobic digestion, gasification, incineration, biogas recovery from landfills, and pyrolysis; this last was excluded due to its greater application potential with substrates such as plastic waste. The six sub-criteria identified and prioritized were social acceptability (36%), greenhouse gas emissions mitigated (16.17%), MSW reduction (15.83%), energy production (13.80%), technological maturity (12.95%), and electrical energy conversion efficiency (5.25%), with the decreasing order of preferences of anaerobic digestion (78.2%), gasification (47.5%), incineration (27.4%), and biogas recovery from landfills (6.6%); the latter was the least desirable alternative (lower social acceptance and CO 2 tons mitigated in relation to the other options). The innovative nature of this study is the identification and consideration of the comprehensive management of this type of waste of a large number of criteria (120 environmental, 52 social, and 59 technical) and the validation of the results through a sensitivity analysis, which allowed us to confirm for this study, that anaerobic digestion is the most favorable technology for the treatment and energy use of FW.

Suggested Citation

  • Patricia Torres-Lozada & Pablo Manyoma-Velásquez & Jenny Fabiana Gaviria-Cuevas, 2023. "Prioritization of Waste-to-Energy Technologies Associated with the Utilization of Food Waste," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5857-:d:1109446
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5857/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5857/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali Akbar Barati & Hossein Azadi & Milad Dehghani Pour & Philippe Lebailly & Mostafa Qafori, 2019. "Determining Key Agricultural Strategic Factors Using AHP-MICMAC," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
    2. Dastjerdi, B. & Strezov, V. & Kumar, R. & Behnia, M., 2019. "An evaluation of the potential of waste to energy technologies for residual solid waste in New South Wales, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Longsheng, Cheng & Ali Shah, Syed Ahsan & Solangi, Yasir Ahmed & Ahmad, Munir & Ali, Sharafat, 2022. "An integrated SWOT-multi-criteria analysis of implementing sustainable waste-to-energy in Pakistan," Renewable Energy, Elsevier, vol. 195(C), pages 1438-1453.
    4. Alberto Benato & Alarico Macor, 2017. "Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle," Energies, MDPI, vol. 10(3), pages 1-18, March.
    5. Wallerand, Anna S. & Kermani, Maziar & Voillat, Régis & Kantor, Ivan & Maréchal, François, 2018. "Optimal design of solar-assisted industrial processes considering heat pumping: Case study of a dairy," Renewable Energy, Elsevier, vol. 128(PB), pages 565-585.
    6. Getahun, T. & Nigusie, A. & Entele, T. & Gerven, T. Van & Bruggen, B. Van der, 2012. "Effect of turning frequencies on composting biodegradable municipal solid waste quality," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 79-84.
    7. Mine Isik & Özay Özaydın & Şule Önsel Ekici & Y. Ilker Topcu, 2022. "Analyzing the Interaction of Renewable Energy Penetration with the Wealth of Nations Using Bayesian Nets," International Series in Operations Research & Management Science, in: Y. Ilker Topcu & Şule Önsel Ekici & Özgür Kabak & Emel Aktas & Özay Özaydın (ed.), New Perspectives in Operations Research and Management Science, pages 527-550, Springer.
    8. Roos, Ernst & den Hertog, Dick, 2021. "A distributionally robust analysis of the program evaluation and review technique," European Journal of Operational Research, Elsevier, vol. 291(3), pages 918-928.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sangseop Lim & Chang-Hee Lee & Jae-Hwan Bae & Young-Hun Jeon, 2024. "Identifying the Optimal Valuation Model for Maritime Data Assets with the Analytic Hierarchy Process (AHP)," Sustainability, MDPI, vol. 16(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andra Lovasz & Nicu Cornel Sabau & Ioana Borza & Radu Brejea, 2023. "Production and Quality of Biodiesel under the Influence of a Rapeseed Fertilization System," Energies, MDPI, vol. 16(9), pages 1-27, April.
    2. Davide Toselli & Florian Heberle & Dieter Brüggemann, 2019. "Techno-Economic Analysis of Hybrid Binary Cycles with Geothermal Energy and Biogas Waste Heat Recovery," Energies, MDPI, vol. 12(10), pages 1-18, May.
    3. Alberto Benato & Alarico Macor, 2021. "Costs to Reduce the Human Health Toxicity of Biogas Engine Emissions," Energies, MDPI, vol. 14(19), pages 1-17, October.
    4. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    5. Jodlbauer, Herbert & Tripathi, Shailesh & Brunner, Manuel & Bachmann, Nadine, 2022. "Stability of cross impact matrices," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    6. Alberto Benato & Chiara D’Alpaos & Alarico Macor, 2022. "Possible Ways of Extending the Biogas Plants Lifespan after the Feed-In Tariff Expiration," Energies, MDPI, vol. 15(21), pages 1-23, October.
    7. Maciej Kuboń & Zbigniew Skibko & Sylwester Tabor & Urszula Malaga-Toboła & Andrzej Borusiewicz & Wacław Romaniuk & Janusz Zarajczyk & Pavel Neuberger, 2023. "Analysis of Voltage Distortions in the Power Grid Arising from Agricultural Biogas Plant Operation," Energies, MDPI, vol. 16(17), pages 1-21, August.
    8. Sebastian Staub & Peter Bazan & Konstantinos Braimakis & Dominik Müller & Christoph Regensburger & Daniel Scharrer & Bernd Schmitt & Daniel Steger & Reinhard German & Sotirios Karellas & Marco Pruckne, 2018. "Reversible Heat Pump–Organic Rankine Cycle Systems for the Storage of Renewable Electricity," Energies, MDPI, vol. 11(6), pages 1-17, May.
    9. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
    10. Kristóf Kummer & Attila R. Imre, 2021. "Seasonal and Multi-Seasonal Energy Storage by Power-to-Methane Technology," Energies, MDPI, vol. 14(11), pages 1-13, June.
    11. Cesaro, A. & Belgiorno, V. & Guida, M., 2015. "Compost from organic solid waste: Quality assessment and European regulations for its sustainable use," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 72-79.
    12. Magdalena Santos-Rodriguez, M. & Flores-Tlacuahuac, Antonio & Zavala, Victor M., 2017. "A stochastic optimization approach for the design of organic fluid mixtures for low-temperature heat recovery," Applied Energy, Elsevier, vol. 198(C), pages 145-159.
    13. Esakkimuthu, Sivakumar & Krishnamurthy, Venkatesan & Wang, Shuang & Hu, Xun & K, Swaminathan & Abomohra, Abd El-Fatah, 2020. "Application of p-coumaric acid for extraordinary lipid production in Tetradesmus obliquus: A sustainable approach towards enhanced biodiesel production," Renewable Energy, Elsevier, vol. 157(C), pages 368-376.
    14. Jaime A. Mesa & Carlos Fúquene-Retamoso & Aníbal Maury-Ramírez, 2021. "Life Cycle Assessment on Construction and Demolition Waste: A Systematic Literature Review," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    15. Osman Özkaraca & Pınar Keçebaş & Cihan Demircan & Ali Keçebaş, 2017. "Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm," Energies, MDPI, vol. 10(11), pages 1-28, October.
    16. Yıldız Koç & Hüseyin Yağlı & Ali Koç, 2019. "Exergy Analysis and Performance Improvement of a Subcritical/Supercritical Organic Rankine Cycle (ORC) for Exhaust Gas Waste Heat Recovery in a Biogas Fuelled Combined Heat and Power (CHP) Engine Thro," Energies, MDPI, vol. 12(4), pages 1-22, February.
    17. Masera, Kemal & Tannous, Hadi & Stojceska, Valentina & Tassou, Savvas, 2023. "An investigation of the recent advances of the integration of solar thermal energy systems to the dairy processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    18. Helen Onyeaka & Phemelo Tamasiga & Uju Mary Nwauzoma & Taghi Miri & Uche Chioma Juliet & Ogueri Nwaiwu & Adenike A. Akinsemolu, 2023. "Using Artificial Intelligence to Tackle Food Waste and Enhance the Circular Economy: Maximising Resource Efficiency and Minimising Environmental Impact: A Review," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    19. Tilahun, Fitsum Bekele & Bhandari, Ramchandra & Mamo, Mengesha, 2019. "Design optimization and control approach for a solar-augmented industrial heating," Energy, Elsevier, vol. 179(C), pages 186-198.
    20. Youcef Redjeb & Khatima Kaabeche-Djerafi & Anna Stoppato & Alberto Benato, 2021. "The IRC-PD Tool: A Code to Design Steam and Organic Waste Heat Recovery Units," Energies, MDPI, vol. 14(18), pages 1-37, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5857-:d:1109446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.