IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5820-d1108727.html
   My bibliography  Save this article

Combined Effects of Climate and Pests on Fig ( Ficus carica L.) Yield in a Mediterranean Region: Implications for Sustainable Agricultural Strategies

Author

Listed:
  • Mohammed Khalil Mellal

    (Centre de Recherche en Technologies Agro-Alimentaires (CRTAA), Campus Universitaire Tergua Ouzemour, Bejaia 06000, Algeria)

  • Rassim Khelifa

    (Biology Department, Concordia University, 7141 Sherbrooke St. W., Montreal, QC H4B 1R6, Canada)

  • Abdelmadjid Chelli

    (Laboratoire de Zoologie Appliquée et d’Ecophysiologie Animale, Université Bejaia, Bejaia 06000, Algeria)

  • Naima Djouadi

    (Direction des Services Agricoles, Bejaia 06000, Algeria)

  • Khodir Madani

    (Centre de Recherche en Technologies Agro-Alimentaires (CRTAA), Campus Universitaire Tergua Ouzemour, Bejaia 06000, Algeria)

Abstract

Fig cultivation has long been an agricultural tradition in the Mediterranean region, providing economic and social benefits to local communities. Understanding fig tree yield response to the rapid invasions of fig pests and shifts in climatic conditions is essential for developing appropriate sustainable agricultural strategies. In this context, we investigate whether rapid changes in climate and pest invasions have had a combined effect on fig ( Ficus carica L.) tree yield. We used data collected over 10 years in Bejaïa province, Algeria, and conducted a regression analysis to investigate the relationship between fig tree yield and two key factors. Results revealed a significant warming trend (0.057 °C yr −1 ), and a decrease in precipitation (−27.1 mm yr −1 ), in the region. Multiple pests, including pathogenic fungi ( Diaporthe cinerascens, Fusarium spp.) and ravaging bark beetles ( Hypocryphalus scabricollis ), have spread in the region. Fig tree yield declined by 25% during the study period and was affected by both factors. Our findings provide valuable insights that can aid farmers and practitioners in mitigating risks that arise from the combined effects of climate change and pest invasions, thereby promoting sustainable farming practices.

Suggested Citation

  • Mohammed Khalil Mellal & Rassim Khelifa & Abdelmadjid Chelli & Naima Djouadi & Khodir Madani, 2023. "Combined Effects of Climate and Pests on Fig ( Ficus carica L.) Yield in a Mediterranean Region: Implications for Sustainable Agricultural Strategies," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5820-:d:1108727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5820/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5820/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aggarwal, P.K. & Banerjee, B. & Daryaei, M.G. & Bhatia, A. & Bala, A. & Rani, S. & Chander, S. & Pathak, H. & Kalra, N., 2006. "InfoCrop: A dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. II. Performance of the model," Agricultural Systems, Elsevier, vol. 89(1), pages 47-67, July.
    2. Prishchepov, Alexander V. & Ponkina, Elena & Sun, Zhanli & Müller, Daniel, 2019. "Revealing the determinants of wheat yields in the Siberian breadbasket of Russia with Bayesian networks," Land Use Policy, Elsevier, vol. 80(C), pages 21-31.
    3. Bernd Wagner & Hendrik Vogel & Alexander Francke & Tobias Friedrich & Timme Donders & Jack H. Lacey & Melanie J. Leng & Eleonora Regattieri & Laura Sadori & Thomas Wilke & Giovanni Zanchetta & Christi, 2019. "Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years," Nature, Nature, vol. 573(7773), pages 256-260, September.
    4. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    5. Aggarwal, P.K. & Kalra, N. & Chander, S. & Pathak, H., 2006. "InfoCrop: A dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. I. Model description," Agricultural Systems, Elsevier, vol. 89(1), pages 1-25, July.
    6. Hanan Ali Alrteimei & Zulfa Hanan Ash’aari & Farrah Melissa Muharram, 2022. "Last Decade Assessment of the Impacts of Regional Climate Change on Crop Yield Variations in the Mediterranean Region," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    7. Lindumusa Myeni & Mokhele Moeletsi & Mulalo Thavhana & Mulalo Randela & Lebohang Mokoena, 2019. "Barriers Affecting Sustainable Agricultural Productivity of Smallholder Farmers in the Eastern Free State of South Africa," Sustainability, MDPI, vol. 11(11), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Sujithra & Subhash Chander, 2013. "Simulation of rice brown planthopper, Nilaparvata lugens (Stal.) population and crop-pest interactions to assess climate change impact," Climatic Change, Springer, vol. 121(2), pages 331-347, November.
    2. Paresh B. Shirsath & Vinay Kumar Sehgal & Pramod K. Aggarwal, 2020. "Downscaling Regional Crop Yields to Local Scale Using Remote Sensing," Agriculture, MDPI, vol. 10(3), pages 1-14, March.
    3. Kattarkandi Byjesh & Soora Kumar & Pramod Aggarwal, 2010. "Simulating impacts, potential adaptation and vulnerability of maize to climate change in India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(5), pages 413-431, June.
    4. Fargue-Lelièvre, A. & Le Cœur, D. & Baudry, J., 2011. "Integrating farming techniques in an ecological matrix model: Implementation on the primrose (Primula vulgaris)," Ecological Modelling, Elsevier, vol. 222(4), pages 1002-1015.
    5. Trnka, M. & Muška, F. & Semerádová, D. & Dubrovský, M. & Kocmánková, E. & Žalud, Z., 2007. "European Corn Borer life stage model: Regional estimates of pest development and spatial distribution under present and future climate," Ecological Modelling, Elsevier, vol. 207(2), pages 61-84.
    6. Sulav Paudel & Lalit P. Sah & Mukti Devkota & Vijaya Poudyal & P.V. Vara Prasad & Manuel R. Reyes, 2020. "Conservation Agriculture and Integrated Pest Management Practices Improve Yield and Income while Reducing Labor, Pests, Diseases and Chemical Pesticide Use in Smallholder Vegetable Farms in Nepal," Sustainability, MDPI, vol. 12(16), pages 1-16, August.
    7. Singh, P. & Aggarwal, P. K. & Bhatia, V. S. & Murty, M. V. R. & Pala, M. & Oweis, T. & Benli, B. & Rao, K. P. C. & Wani, S. P., 2009. "Yield gap analysis: modelling of achievable yields at farm level," IWMI Books, Reports H041995, International Water Management Institute.
    8. Selvaraj Krishnan & Subhash Chander, 2015. "Simulation of climatic change impact on crop-pest interactions: a case study of rice pink stem borer Sesamia inferens (Walker)," Climatic Change, Springer, vol. 131(2), pages 259-272, July.
    9. K. Viswanath & P. Sinha & S. Naresh Kumar & Taru Sharma & Shalini Saxena & Shweta Panjwani & H. Pathak & Shalu Mishra Shukla, 2017. "Simulation of leaf blast infection in tropical rice agro-ecology under climate change scenario," Climatic Change, Springer, vol. 142(1), pages 155-167, May.
    10. A. Mukherjee & A. K. S. Huda, 2018. "Assessment of climate variability and trend on wheat productivity in West Bengal, India: crop growth simulation approach," Climatic Change, Springer, vol. 147(1), pages 235-252, March.
    11. Kalra, Naveen & Chakraborty, Debashis & Ramesh Kumar, P. & Jolly, Monica & Sharma, P.K., 2007. "An approach to bridging yield gaps, combining response to water and other resource inputs for wheat in northern India, using research trials and farmers' fields data," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 54-64, October.
    12. Faramarzi, Monireh & Yang, Hong & Schulin, Rainer & Abbaspour, Karim C., 2010. "Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production," Agricultural Water Management, Elsevier, vol. 97(11), pages 1861-1875, November.
    13. K. Hebbar & M. Venugopalan & A. Prakash & P. Aggarwal, 2013. "Simulating the impacts of climate change on cotton production in India," Climatic Change, Springer, vol. 118(3), pages 701-713, June.
    14. Vayssières, Jonathan & Guerrin, François & Paillat, Jean-Marie & Lecomte, Philippe, 2009. "GAMEDE: A global activity model for evaluating the sustainability of dairy enterprises Part I - Whole-farm dynamic model," Agricultural Systems, Elsevier, vol. 101(3), pages 128-138, July.
    15. Saon Banerjee & Subharanjan Das & Asis Mukherjee & Apurba Mukherjee & B. Saikia, 2016. "Adaptation strategies to combat climate change effect on rice and mustard in Eastern India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(2), pages 249-261, February.
    16. Dhakar, Rajkumar & Sehgal, Vinay Kumar & Chakraborty, Debasish & Sahoo, Rabi Narayan & Mukherjee, Joydeep & Ines, Amor V.M. & Kumar, Soora Naresh & Shirsath, Paresh B. & Roy, Somnath Baidya, 2022. "Field scale spatial wheat yield forecasting system under limited field data availability by integrating crop simulation model with weather forecast and satellite remote sensing," Agricultural Systems, Elsevier, vol. 195(C).
    17. Pathak, H. & Wassmann, R., 2007. "Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: I. Generation of technical coefficients," Agricultural Systems, Elsevier, vol. 94(3), pages 807-825, June.
    18. Siad, Si Mokrane & Iacobellis, Vito & Zdruli, Pandi & Gioia, Andrea & Stavi, Ilan & Hoogenboom, Gerrit, 2019. "A review of coupled hydrologic and crop growth models," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    19. Verma, Amit Kumar & Garg, Pradeep Kumar & Prasad, K.S. Hari & Dadhwal, Vinay Kumar, 2023. "Variety-specific sugarcane yield simulations and climate change impacts on sugarcane yield using DSSAT-CSM-CANEGRO model," Agricultural Water Management, Elsevier, vol. 275(C).
    20. Kumar, Manoj & Kalra, Naveen & Khaiter, Peter & Ravindranath, N.H. & Singh, Varsha & Singh, Hukum & Sharma, Subrat & Rahnamayan, Shahryar, 2019. "PhenoPine: A simulation model to trace the phenological changes in Pinus roxhburghii in response to ambient temperature rise," Ecological Modelling, Elsevier, vol. 404(C), pages 12-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5820-:d:1108727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.