IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4356-d1084083.html
   My bibliography  Save this article

Complexity, Crash and Collapse of Chaos: Clues for Designing Sustainable Systems, with Focus on Grassland-Based Systems

Author

Listed:
  • Johannes B. (Hans) Schiere

    (La Ventana, Steenwijkerweg 201, 8335 LG Witte Paarden, The Netherlands)

  • Pablo Gregorini

    (Faculty of Agricultural and Life Sciences, Lincoln University, P.O. Box 85084, Christchurch 7647, New Zealand)

Abstract

Terms such as system crash, collapse of chaos and complexity can help one understand change, also in biological, socio-economic and technical systems. These terms need, however, explanation for fruitful dialogue on design of sustainable systems. We start this paper on Grass Based (GB) systems, therefore, dwelling on these terms and notions as review for the insiders and to help interested ‘outsiders’. We also stress the need to use additional and/or new paradigms for understanding of the nature of nature. However, we show that many such ‘new’ paradigms were known for long time around the globe among philosophers and common men, giving reason to include quotes and examples from other cultures and eras. In the past few centuries, those paradigms have become hidden, perhaps, under impressive but short-term successes of more linear paradigms. Therefore, we list hang-ups on paradigms of those past few centuries. We then outline what is meant by ‘GB systems’, which exist in multiple forms/‘scapes’. Coping with such variation is perhaps the most central aspect of complexity. To help cope with this variation, the different (GB) systems can be arranged on spatial, temporal, and other scales in such a way that the arrangements form logical sequences (evolutions) of stable states and transitions of Complex Adaptive Systems (CAS). Together with other ways to handle complexity, we give examples of such arrangements to illustrate how one can (re-)imagine, (re-)cognize and manage initial chaotic behaviors and eventual ‘collapse’ of chaos into design and/or emergence of new systems. Then, we list known system behaviors, such as predator–prey cycles, adaptive cycles, lock-in, specialization and even tendency to higher (or lower) entropy. All this is needed to understand changes in management of evolving GB into multi-scapes. Integration of disciplines and paradigms indicates that a win-win is likely to be exception rather than rule. With the rules given in this paper, one can reset teaching, research, rural development, and policy agendas in GB-systems and other areas of life.

Suggested Citation

  • Johannes B. (Hans) Schiere & Pablo Gregorini, 2023. "Complexity, Crash and Collapse of Chaos: Clues for Designing Sustainable Systems, with Focus on Grassland-Based Systems," Sustainability, MDPI, vol. 15(5), pages 1-43, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4356-:d:1084083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4356/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4356/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacob J. Krabbe, 1995. "Roscher’s organistic legacy," Journal of Economic Studies, Emerald Group Publishing, vol. 22(3/4/5), pages 159-170, September.
    2. van de Ven, G.W.J. & van Keulen, H., 2007. "A mathematical approach to comparing environmental and economic goals in dairy farming: Identifying strategic development options," Agricultural Systems, Elsevier, vol. 94(2), pages 231-246, May.
    3. Ika Darnhofer, 2014. "Resilience and why it matters for farm management," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(3), pages 461-484.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard Morris & Shannon Davis & Gwen-Aëlle Grelet & Crile Doscher & Pablo Gregorini, 2024. "A Model for Spatially Explicit Landscape Configuration and Ecosystem Service Performance, ESMAX: Model Description and Explanation," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    2. Fabiellen C. Pereira & Stuart Charters & Carol M. S. Smith & Thomas M. R. Maxwell & Pablo Gregorini, 2023. "A Geospatial Modelling Approach to Assess the Capability of High-Country Stations in Delivering Ecosystem Services," Land, MDPI, vol. 12(6), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shingo Yoshida & Hironori Yagi, 2021. "Long-Term Development of Urban Agriculture: Resilience and Sustainability of Farmers Facing the Covid-19 Pandemic in Japan," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
    2. Miranda P.M. Meuwissen & Peter H. Feindt & Peter Midmore & Erwin Wauters & Robert Finger & Franziska Appel & Alisa Spiegel & Erik Mathijs & Katrien J.A.M. Termeer & Alfons Balmann & Yann de Mey & Pytr, 2020. "The Struggle of Farming Systems in Europe: Looking for Explanations through the Lens of Resilience," EuroChoices, The Agricultural Economics Society, vol. 19(2), pages 4-11, August.
    3. Daniele, Bertolozzi-Caredio & Barbara, Soriano & Isabel, Bardaji & Alberto, Garrido, 2022. "Analysis of perceived robustness, adaptability and transformability of Spanish extensive livestock farms under alternative challenging scenarios," Agricultural Systems, Elsevier, vol. 202(C).
    4. Katarzyna Zawalińska & Alexandra Smyrniotopoulou & Katalin Balazs & Michael Böhm & Mihai Chitea & Violeta Florian & Mihaela Fratila & Piotr Gradziuk & Stuart Henderson & Katherine Irvine & Vasilia Kon, 2022. "Advancing the Contributions of European Stakeholders in Farming Systems to Transitions to Agroecology," EuroChoices, The Agricultural Economics Society, vol. 21(3), pages 50-63, December.
    5. Basharat Ali & Peter Dahlhaus, 2022. "Roles of Selective Agriculture Practices in Sustainable Agricultural Performance: A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    6. Khalilullah Mayar & David G. Carmichael & Xuesong Shen, 2022. "Resilience and Systems—A Review," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    7. Lecegui, Antonio & Olaizola, Ana María & López-i-Gelats, Feliu & Varela, Elsa, 2022. "Implementing the livelihood resilience framework: An indicator-based model for assessing mountain pastoral farming systems," Agricultural Systems, Elsevier, vol. 199(C).
    8. Thorsøe, Martin Hvarregaard & Noe, Egon Bjørnshave & Lamandé, Mathieu & Frelih-Larsen, Ana & Kjeldsen, Chris & Zandersen, Marianne & Schjønning, Per, 2019. "Sustainable soil management - Farmers’ perspectives on subsoil compaction and the opportunities and barriers for intervention," Land Use Policy, Elsevier, vol. 86(C), pages 427-437.
    9. George Van Voorn & Geerten Hengeveld & Jan Verhagen, 2020. "An agent based model representation to assess resilience and efficiency of food supply chains," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-27, November.
    10. Xin Mai & Roger C. K. Chan, 2020. "Detecting the intellectual pathway of resilience thinking in urban and regional studies: A critical reflection on resilience literature," Growth and Change, Wiley Blackwell, vol. 51(3), pages 876-889, September.
    11. Soubry, Bernard & Sherren, Kate, 2022. ""You keep using that word...": Disjointed definitions of resilience in food systems adaptation," Land Use Policy, Elsevier, vol. 114(C).
    12. Slijper, Thomas & Urquhart, Julie & Poortvliet, P. Marijn & Soriano, Bárbara & Meuwissen, Miranda P.M., 2022. "Exploring how social capital and learning are related to the resilience of Dutch arable farmers," Agricultural Systems, Elsevier, vol. 198(C).
    13. Victor Ye. Kovalev & Aleksandr N. Semin, 2021. "Resilience of Russia’s agri-food market under customs imbalances of the Eurasian integration," Journal of New Economy, Ural State University of Economics, vol. 22(3), pages 28-43, October.
    14. Dwyer Janet, 2016. "New Approaches to Revitalise Rural Economies and Communities – Reflections of a Policy Analyst," European Countryside, Sciendo, vol. 8(2), pages 175-182, June.
    15. Pierre Chiaverina & Sophie Drogué & Florence Jacquet & Larry Lev & Robert King, 2023. "Does short food supply chain participation improve farm economic performance? A meta‐analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 54(3), pages 400-413, May.
    16. Florence Diserens & John Michael Humphries Choptiany & Dominique Barjolle & Benjamin Graeub & Claire Durand & Johan Six, 2018. "Resilience Assessment of Swiss Farming Systems: Piloting the SHARP-Tool in Vaud," Sustainability, MDPI, vol. 10(12), pages 1-19, November.
    17. Komarek, Adam M. & De Pinto, Alessandro & Smith, Vincent H., 2020. "A review of types of risks in agriculture: What we know and what we need to know," Agricultural Systems, Elsevier, vol. 178(C).
    18. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    19. Cariola, Lucía & De la Peña García, Antonio & Hilgert, Norma I., 2020. "Adaptive farm management in the context of the expansion of industrial tree plantations in northern Argentina," Land Use Policy, Elsevier, vol. 96(C).
    20. Thomas Slijper & Yann de Mey & P Marijn Poortvliet & Miranda P M Meuwissen, 2022. "Quantifying the resilience of European farms using FADN," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(1), pages 121-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4356-:d:1084083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.