IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p876-d1322661.html
   My bibliography  Save this article

A Model for Spatially Explicit Landscape Configuration and Ecosystem Service Performance, ESMAX: Model Description and Explanation

Author

Listed:
  • Richard Morris

    (Department of Agricultural Science, Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85005, Lincoln 7674, New Zealand)

  • Shannon Davis

    (School of Landscape Architecture, Faculty of Environment, Society and Design, Lincoln University, Lincoln 7674, New Zealand)

  • Gwen-Aëlle Grelet

    (Manaaki Whenua—Landcare Research, 54 Gerald Street, Lincoln 7640, New Zealand)

  • Crile Doscher

    (School of Landscape Architecture, Faculty of Environment, Society and Design, Lincoln University, Lincoln 7674, New Zealand)

  • Pablo Gregorini

    (Department of Agricultural Science, Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85005, Lincoln 7674, New Zealand)

Abstract

It is critical that we move our understanding of the ecosystem services (ESs) produced by landscapes from the present abundance of analysis to a fundamental basis of design. This involves enhancing the ability to understand and model the interconnected, coevolving system of humans and the rest of nature, thus contributing to the design of sustainable landscapes. In this paper, we hypothesise that the spatial configuration of landscape components (the size and arrangement of tree clumps, paddocks, crops, water features, etc.) impacts the production of regulating ESs, which in turn have a leveraging effect on provisioning and cultural ESs. Drawing on the precepts of Ecological Field Theory, we present the development and implications of a conceptual Geographic Information System (GIS)-based model, ESMAX, that utilises the idiosyncratic distance-decay characteristics of regulating ESs. These ‘ES fields’ are visualised as radiating into the landscape from their source components, addressing a gap in biophysical reality that has been identified as a shortcoming of existing ES modelling based on landcover proxies. Hypothetical landscape arrangements of simplified landscape components are tested with ESMAX across three regulating ESs: cooling effect, nitrogen retention, and habitat provision. The model calculates the overall ES performance of each landscape arrangement by tabulating the ES fields produced and, critically, the nonlinear response where fields overlap. The results indicate a primary sensitivity to the size of components and a secondary sensitivity to the arrangement of components. Consequently, ESMAX can be used to design landscape configurations that (1) maximise the production of specific regulating ESs and (2) improve the utilisation of natural ES-producing resources.

Suggested Citation

  • Richard Morris & Shannon Davis & Gwen-Aëlle Grelet & Crile Doscher & Pablo Gregorini, 2024. "A Model for Spatially Explicit Landscape Configuration and Ecosystem Service Performance, ESMAX: Model Description and Explanation," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:876-:d:1322661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, L. & McGechan, M.B. & McRoberts, N. & Baddeley, J.A. & Watson, C.A., 2007. "SPACSYS: Integration of a 3D root architecture component to carbon, nitrogen and water cycling—Model description," Ecological Modelling, Elsevier, vol. 200(3), pages 343-359.
    2. Richard D. Bardgett & Wim H. van der Putten, 2014. "Belowground biodiversity and ecosystem functioning," Nature, Nature, vol. 515(7528), pages 505-511, November.
    3. Burkhard, Benjamin & Fath, Brian D. & Müller, Felix, 2011. "Adapting the adaptive cycle: Hypotheses on the development of ecosystem properties and services," Ecological Modelling, Elsevier, vol. 222(16), pages 2878-2890.
    4. Forest Isbell & Andrew Gonzalez & Michel Loreau & Jane Cowles & Sandra Díaz & Andy Hector & Georgina M. Mace & David A. Wardle & Mary I. O'Connor & J. Emmett Duffy & Lindsay A. Turnbull & Patrick L. T, 2017. "Linking the influence and dependence of people on biodiversity across scales," Nature, Nature, vol. 546(7656), pages 65-72, June.
    5. Johannes B. (Hans) Schiere & Pablo Gregorini, 2023. "Complexity, Crash and Collapse of Chaos: Clues for Designing Sustainable Systems, with Focus on Grassland-Based Systems," Sustainability, MDPI, vol. 15(5), pages 1-43, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cepic, Michael & Bechtold, Ulrike & Wilfing, Harald, 2022. "Modelling human influences on biodiversity at a global scale–A human ecology perspective," Ecological Modelling, Elsevier, vol. 465(C).
    2. Yinhong Hu & Weiwei Yu & Bowen Cui & Yuanyuan Chen & Hua Zheng & Xiaoke Wang, 2021. "Pavement Overrides the Effects of Tree Species on Soil Bacterial Communities," IJERPH, MDPI, vol. 18(4), pages 1-11, February.
    3. Angela Yaneth Landínez-Torres & Jessika Lucia Becerra Abril & Solveig Tosi & Lidia Nicola, 2020. "Soil Microfungi of the Colombian Natural Regions," IJERPH, MDPI, vol. 17(22), pages 1-28, November.
    4. Chen Ma & Runze Nie & Guoming Du, 2023. "Responses of Soil Collembolans to Land Degradation in a Black Soil Region in China," IJERPH, MDPI, vol. 20(6), pages 1-13, March.
    5. Fabiellen C. Pereira & Stuart Charters & Carol M. S. Smith & Thomas M. R. Maxwell & Pablo Gregorini, 2023. "A Geospatial Modelling Approach to Assess the Capability of High-Country Stations in Delivering Ecosystem Services," Land, MDPI, vol. 12(6), pages 1-18, June.
    6. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    7. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Wojciech Bierza & Joanna Czarnecka & Agnieszka Błońska & Agnieszka Kompała-Bąba & Agnieszka Hutniczak & Bartosz Jendrzejek & Jawdat Bakr & Andrzej M. Jagodziński & Dariusz Prostański & Gabriela Woźnia, 2023. "Plant Diversity and Species Composition in Relation to Soil Enzymatic Activity in the Novel Ecosystems of Urban–Industrial Landscapes," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    9. Jingfeng Zhu & Ning Ding & Dehuan Li & Wei Sun & Yujing Xie & Xiangrong Wang, 2020. "Spatiotemporal Analysis of the Nonlinear Negative Relationship between Urbanization and Habitat Quality in Metropolitan Areas," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    10. Qiuju Wang & Xin Liu & Jingyang Li & Xiaoyu Yang & Zhenhua Guo, 2021. "Straw application and soil organic carbon change: A meta-analysis," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 16(2), pages 112-120.
    11. Jonas Inkotte & Barbara Bomfim & Márcio Gonçalves da Rosa & Marco Bruno Xavier Valadão & Alcides Gatto & Juscelina Arcanjo Santos & Reginaldo Sergio Pereira, 2024. "Changes in Land Use through Eucalyptus Plantations Impact Soil Fauna Communities in Brazilian Savannas," Sustainability, MDPI, vol. 16(7), pages 1-14, April.
    12. Häyhä, Tiina & Franzese, Pier Paolo & Paletto, Alessandro & Fath, Brian D., 2015. "Assessing, valuing, and mapping ecosystem services in Alpine forests," Ecosystem Services, Elsevier, vol. 14(C), pages 12-23.
    13. Tzen-Ying Ling, 2022. "Dynamic Flood Resilience Typology: A Systemic Transitional Adaptation from Peitou Plateau, Taiwan," Sustainability, MDPI, vol. 14(2), pages 1-24, January.
    14. Darnhofer, Ika, 2021. "Resilience or how do we enable agricultural systems to ride the waves of unexpected change?," Agricultural Systems, Elsevier, vol. 187(C).
    15. Xupu Li & Shuangshuang Li & Yufeng Zhang & Patrick J. O’Connor & Liwei Zhang & Junping Yan, 2021. "Landscape Ecological Risk Assessment under Multiple Indicators," Land, MDPI, vol. 10(7), pages 1-16, July.
    16. Lianyu Zhou & Xuelan Ma & Longrui Wang & Wenjuan Sun & Yu Liu & Yun Ma & Huichun Xie & Feng Qiao, 2023. "Region and Crop Type Influenced Fungal Diversity and Community Structure in Agricultural Areas in Qinghai Province," Agriculture, MDPI, vol. 14(1), pages 1-19, December.
    17. Pires, Aliny P.F. & Amaral, Aryanne G. & Padgurschi, Maíra C.G. & Joly, Carlos A. & Scarano, Fabio R., 2018. "Biodiversity research still falls short of creating links with ecosystem services and human well-being in a global hotspot," Ecosystem Services, Elsevier, vol. 34(PA), pages 68-73.
    18. Wu, L. & Harris, P. & Misselbrook, T.H. & Lee, M.R.F., 2022. "Simulating grazing beef and sheep systems," Agricultural Systems, Elsevier, vol. 195(C).
    19. Pilar Andrés & Enrique Doblas-Miranda & Stefania Mattana & Roberto Molowny-Horas & Jordi Vayreda & Moisès Guardiola & Joan Pino & Javier Gordillo, 2021. "A Battery of Soil and Plant Indicators of NBS Environmental Performance in the Context of Global Change," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    20. Bown, James L. & Pachepsky, Elizaveta & Eberst, Alistair & Bausenwein, Ursula & Millard, Peter & Squire, Geoff R. & Crawford, John W., 2007. "Consequences of intraspecific variation for the structure and function of ecological communities," Ecological Modelling, Elsevier, vol. 207(2), pages 264-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:876-:d:1322661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.