IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11366-d1199499.html
   My bibliography  Save this article

Bacterial Communities: Interaction to Abiotic Conditions under Effect of Anthropogenic Pressure

Author

Listed:
  • Monika Vilkiene

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, 58344 Kėdainiai, Lithuania)

  • Ieva Mockeviciene

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, 58344 Kėdainiai, Lithuania)

  • Grazina Kadziene

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, 58344 Kėdainiai, Lithuania)

  • Danute Karcauskiene

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, 58344 Kėdainiai, Lithuania)

  • Regina Repsiene

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, 58344 Kėdainiai, Lithuania)

  • Ona Auskalniene

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, 58344 Kėdainiai, Lithuania)

Abstract

Relationships between different microorganisms’ groups and the soil environment are reversible, and the state of the soil and its provided services can also change the structure and abundance of microorganisms as well as that microorganisms can affect soil conditions. The aim of our research was to analyze the physical and chemical properties of differently formed agroecosystems, which are affected by different anthropogenic pressures and to compare how bacterial composition differ in totally different environments. It was established that different soil microorganisms’ physiological groups significantly correlated with chemical and physical soil properties: atmospheric nitrogen-fixing bacteria showed a positive correlation with soil pH KCl , N sum , P 2 O 5 , and soil bulk density; meanwhile, soil porosity, and the K 2 O amount in the soil negatively affected the population of atmospheric nitrogen-fixing bacteria. The same tendencies were inherent to actinomycetes and ammonifying bacteria. Micromycetes showed a negative trend with soil pH KCl , showing that soils with lower pH KCl are characterized by a higher abundance of micromycetes. Analysis of the taxonomic diversity of soil microbes reveals that the bacterial communities were dominated by two main species of bacteria: Betaproteobacterium and Candidatus Saccharibacteria . Bacterial identification shows that the main bacterial species were the same in all analyzed sampling places despite the different anthropogenic activities, parent material, and other abiotic conditions. Only a few species were identified in different soil groups, and it may be assumed that those groups could be potential bioindicators for specific soil types, but more in depth research is needed to confirm this hypothesis.

Suggested Citation

  • Monika Vilkiene & Ieva Mockeviciene & Grazina Kadziene & Danute Karcauskiene & Regina Repsiene & Ona Auskalniene, 2023. "Bacterial Communities: Interaction to Abiotic Conditions under Effect of Anthropogenic Pressure," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11366-:d:1199499
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11366/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11366/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria V. Korneykova & Viacheslav I. Vasenev & Dmitry A. Nikitin & Anastasia S. Soshina & Andrey V. Dolgikh & Yulia L. Sotnikova, 2021. "Urbanization Affects Soil Microbiome Profile Distribution in the Russian Arctic Region," IJERPH, MDPI, vol. 18(21), pages 1-19, November.
    2. Richard D. Bardgett & Wim H. van der Putten, 2014. "Belowground biodiversity and ecosystem functioning," Nature, Nature, vol. 515(7528), pages 505-511, November.
    3. Andrzej Wysokinski & Izabela Lozak, 2021. "The Dynamic of Nitrogen Uptake from Different Sources by Pea ( Pisum sativum L.)," Agriculture, MDPI, vol. 11(1), pages 1-14, January.
    4. Ilaria Piccoli & Till Seehusen & Jenny Bussell & Olga Vizitu & Irina Calciu & Antonio Berti & Gunnar Börjesson & Holger Kirchmann & Thomas Kätterer & Felice Sartori & Chris Stoate & Felicity Crotty & , 2022. "Opportunities for Mitigating Soil Compaction in Europe—Case Studies from the SoilCare Project Using Soil-Improving Cropping Systems," Land, MDPI, vol. 11(2), pages 1-26, February.
    5. Michael Kuhwald & Katja Dörnhöfer & Natascha Oppelt & Rainer Duttmann, 2018. "Spatially Explicit Soil Compaction Risk Assessment of Arable Soils at Regional Scale: The SaSCiA-Model," Sustainability, MDPI, vol. 10(5), pages 1-29, May.
    6. Peipei Yang & Wenxu Dong & Marius Heinen & Wei Qin & Oene Oenema, 2022. "Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis," Land, MDPI, vol. 11(5), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinhong Hu & Weiwei Yu & Bowen Cui & Yuanyuan Chen & Hua Zheng & Xiaoke Wang, 2021. "Pavement Overrides the Effects of Tree Species on Soil Bacterial Communities," IJERPH, MDPI, vol. 18(4), pages 1-11, February.
    2. Tiziano Gomiero, 2015. "Are Biofuels an Effective and Viable Energy Strategy for Industrialized Societies? A Reasoned Overview of Potentials and Limits," Sustainability, MDPI, vol. 7(7), pages 1-31, June.
    3. Yongwei Zhou & Changhai Liu & Ning Ai & Xianghui Tuo & Zhiyong Zhang & Rui Gao & Jiafeng Qin & Caixia Yuan, 2022. "Characteristics of Soil Macrofauna and Its Coupling Relationship with Environmental Factors in the Loess Area of Northern Shaanxi," Sustainability, MDPI, vol. 14(5), pages 1-14, February.
    4. Lei Wang & Xiaobo Huang & Jianrong Su, 2022. "Tree Species Diversity and Stand Attributes Differently Influence the Ecosystem Functions of Pinus yunnanensis Secondary Forests under the Climate Context," Sustainability, MDPI, vol. 14(14), pages 1-12, July.
    5. Angela Yaneth Landínez-Torres & Jessika Lucia Becerra Abril & Solveig Tosi & Lidia Nicola, 2020. "Soil Microfungi of the Colombian Natural Regions," IJERPH, MDPI, vol. 17(22), pages 1-28, November.
    6. David Pires & Valeria Orlando & Raymond L. Collett & David Moreira & Sofia R. Costa & Maria L. Inácio, 2023. "Linking Nematode Communities and Soil Health under Climate Change," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
    7. Chen Ma & Runze Nie & Guoming Du, 2023. "Responses of Soil Collembolans to Land Degradation in a Black Soil Region in China," IJERPH, MDPI, vol. 20(6), pages 1-13, March.
    8. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    9. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Wojciech Bierza & Joanna Czarnecka & Agnieszka Błońska & Agnieszka Kompała-Bąba & Agnieszka Hutniczak & Bartosz Jendrzejek & Jawdat Bakr & Andrzej M. Jagodziński & Dariusz Prostański & Gabriela Woźnia, 2023. "Plant Diversity and Species Composition in Relation to Soil Enzymatic Activity in the Novel Ecosystems of Urban–Industrial Landscapes," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    11. Qiuju Wang & Xin Liu & Jingyang Li & Xiaoyu Yang & Zhenhua Guo, 2021. "Straw application and soil organic carbon change: A meta-analysis," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 16(2), pages 112-120.
    12. Raphael Passaglia Azevedo & Lucas de Castro Moreira da Silva & Fernandes Antonio Costa Pereira & Pedro Maranha Peche & Leila Aparecida Salles Pio & Marcelo Mancini & Nilton Curi & Bruno Montoani Silva, 2022. "Interactions between Intrinsic Soil Properties and Deep Tillage in the Sustainable Management of Perennial Crops," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    13. Nandor Csikos & Malte Schwanebeck & Michael Kuhwald & Peter Szilassi & Rainer Duttmann, 2019. "Density of Biogas Power Plants as An Indicator of Bioenergy Generated Transformation of Agricultural Landscapes," Sustainability, MDPI, vol. 11(9), pages 1-23, April.
    14. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.
    15. Monther M. Tahat & Kholoud M. Alananbeh & Yahia A. Othman & Daniel I. Leskovar, 2020. "Soil Health and Sustainable Agriculture," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    16. Lianyu Zhou & Xuelan Ma & Longrui Wang & Wenjuan Sun & Yu Liu & Yun Ma & Huichun Xie & Feng Qiao, 2023. "Region and Crop Type Influenced Fungal Diversity and Community Structure in Agricultural Areas in Qinghai Province," Agriculture, MDPI, vol. 14(1), pages 1-19, December.
    17. Rudi Hessel & Guido Wyseure & Ioanna S. Panagea & Abdallah Alaoui & Mark S. Reed & Hedwig van Delden & Melanie Muro & Jane Mills & Oene Oenema & Francisco Areal & Erik van den Elsen & Simone Verzandvo, 2022. "Soil-Improving Cropping Systems for Sustainable and Profitable Farming in Europe," Land, MDPI, vol. 11(6), pages 1-27, May.
    18. Hamza Negiş, 2023. "Using Models and Artificial Neural Networks to Predict Soil Compaction Based on Textural Properties of Soils under Agriculture," Agriculture, MDPI, vol. 14(1), pages 1-14, December.
    19. Pilar Andrés & Enrique Doblas-Miranda & Stefania Mattana & Roberto Molowny-Horas & Jordi Vayreda & Moisès Guardiola & Joan Pino & Javier Gordillo, 2021. "A Battery of Soil and Plant Indicators of NBS Environmental Performance in the Context of Global Change," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    20. Benitez-Altuna, Francisco & Trienekens, Jacques & Materia, Valentina C. & Bijman, Jos, 2021. "Factors affecting the adoption of ecological intensification practices: A case study in vegetable production in Chile," Agricultural Systems, Elsevier, vol. 194(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11366-:d:1199499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.