IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3572-d1069181.html
   My bibliography  Save this article

Land Use/Land Cover Change Detection and NDVI Estimation in Pakistan’s Southern Punjab Province

Author

Listed:
  • Yongguang Hu

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
    These authors contributed equally to this work and shared first authorship.)

  • Ali Raza

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
    These authors contributed equally to this work and shared first authorship.)

  • Neyha Rubab Syed

    (School of Energy & Environment, Power Engineering & Engineering Thermophysics, Southeast University, Nanjing 210009, China)

  • Siham Acharki

    (Department of Earth Sciences, Faculty of Sciences and Techniques, Abdelmalek Essaadi University, Tangier 90000, Morocco)

  • Ram L. Ray

    (Department of Agriculture, Nutrition and Human Ecology, College of Agriculture and Human Sciences, Prairie View A & M University, Prairie View, TX 77446, USA)

  • Sajjad Hussain

    (Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad 61100, Pakistan)

  • Hossein Dehghanisanij

    (Agricultural Research, Education and Extension Organization, Agricultural Engineering Research Institute, Karaj P.O. Box 31585-845, Alborz, Iran)

  • Muhammad Zubair

    (School of Transportation, Southeast University, Nanjing 210009, China)

  • Ahmed Elbeltagi

    (Agricultural Engineering Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt)

Abstract

Land use/land cover (LULC) changes are among the most significant human-caused global variations affecting the natural environment and ecosystems. Pakistan’s LULC patterns have undergone huge changes since the 1900s, with no clear mitigation plan. This paper aims to determine LULC and normalized difference vegetation index (NDVI) changes as well as their causes in Pakistan’s Southern Punjab province over four different periods (2000, 2007, 2014, and 2021). Landsat-based images of 30 m × 30 m spatial resolution were used to detect LULC changes, while NDVI dynamics were calculated using Modis Product MOD13Q1 (Tiles: h24 v5, h24 v6) at a resolution of 250 m. The iterative self-organizing (ISO) cluster method (object meta-clustering using the minimal distance center approach) was used to quantify the LULC changes in this research because of its straightforward approach that requires minimal human intervention. The accuracy assessment and the Kappa coefficient were calculated to assess the efficacy of results derived from LULC changes. Our findings revealed considerable changes in settlements, forests, and barren land in Southern Punjab. Compared to 2000, while forest cover had reduced by 31.03%, settlement had increased by 14.52% in 2021. Similarly, forest land had rapidly been converted into barren land. For example, barren land had increased by 12.87% in 2021 compared to 2000. The analysis showed that forests were reduced by 31.03%, while settlements and barren land increased by 14.52% and 12.87%, respectively, over the twenty year period in Southern Punjab. The forest area had decreased to 4.36% by 2021. It shows that 31.03% of forest land had been converted to urban land, barren ground, and farmland. Land that was formerly utilized for vegetation had been converted into urban land due to the expansion of infrastructure and the commercial sector in Southern Punjab. Consequently, proper monitoring of LULC changes is required. Furthermore, relevant agencies, governments, and policymakers must focus on land management development. Finally, the current study provides an overall scenario of how LULC trends are evolving over the study region, which aids in land use planning and management.

Suggested Citation

  • Yongguang Hu & Ali Raza & Neyha Rubab Syed & Siham Acharki & Ram L. Ray & Sajjad Hussain & Hossein Dehghanisanij & Muhammad Zubair & Ahmed Elbeltagi, 2023. "Land Use/Land Cover Change Detection and NDVI Estimation in Pakistan’s Southern Punjab Province," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3572-:d:1069181
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3572/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3572/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marc Hanewinkel & Dominik A. Cullmann & Mart-Jan Schelhaas & Gert-Jan Nabuurs & Niklaus E. Zimmermann, 2013. "Climate change may cause severe loss in the economic value of European forest land," Nature Climate Change, Nature, vol. 3(3), pages 203-207, March.
    2. Cheema, M.J.M. & Bastiaanssen, W.G.M., 2010. "Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis," Agricultural Water Management, Elsevier, vol. 97(10), pages 1541-1552, October.
    3. Wojciech Sroka & Michał Dudek & Tomasz Wojewodzic & Karol Król, 2019. "Generational Changes in Agriculture: The Influence of Farm Characteristics and Socio-Economic Factors," Agriculture, MDPI, vol. 9(12), pages 1-27, December.
    4. Muhammad Ali Imran & Asghar Ali & Muhammad Ashfaq & Sarfraz Hassan & Richard Culas & Chunbo Ma, 2018. "Impact of Climate Smart Agriculture (CSA) Practices on Cotton Production and Livelihood of Farmers in Punjab, Pakistan," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    5. Muhammad Sadiq Khan & Sami Ullah & Tao Sun & Arif UR Rehman & Liding Chen, 2020. "Land-Use/Land-Cover Changes and Its Contribution to Urban Heat Island: A Case Study of Islamabad, Pakistan," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhujun Gu & Maimai Zeng, 2023. "The Use of Artificial Intelligence and Satellite Remote Sensing in Land Cover Change Detection: Review and Perspectives," Sustainability, MDPI, vol. 16(1), pages 1-22, December.
    2. Silvana Pacheco-Treviño & Mario G. Manzano-Camarillo, 2024. "The Socioeconomic Dimensions of Water Scarcity in Urban and Rural Mexico: A Comprehensive Assessment of Sustainable Development," Sustainability, MDPI, vol. 16(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imran Sajid & Bernhard Tischbein & Christian Borgemeister & Martina Flörke, 2022. "Assessing Barriers in Adaptation of Water Management Innovations under Rotational Canal Water Distribution System," Agriculture, MDPI, vol. 12(7), pages 1-16, June.
    2. Channa Suraweera & Martin Baláš & Josef Gallo & Giuseppe D'Andrea & Stanislav Vacek & Jiří Remeš, 2023. "Intensive initial care of silver fir using improving compounds: A way to support diverse forests?," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 69(5), pages 179-192.
    3. Paige Seitz & Robert Strong & Steve Hague & Theresa P. Murphrey, 2022. "Evaluating Agricultural Extension Agent’s Sustainable Cotton Land Production Competencies: Subject Matter Discrepancies Restricting Farmers’ Information Adoption," Land, MDPI, vol. 11(11), pages 1-17, November.
    4. Susanne Neuner & Thomas Knoke, 2017. "Economic consequences of altered survival of mixed or pure Norway spruce under a dryer and warmer climate," Climatic Change, Springer, vol. 140(3), pages 519-531, February.
    5. Sohail Abbas & Zulfiqar Ali Mayo, 2021. "Impact of temperature and rainfall on rice production in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1706-1728, February.
    6. Sohngen, Brent & Tian, Xiaohui, 2016. "Global climate change impacts on forests and markets," Forest Policy and Economics, Elsevier, vol. 72(C), pages 18-26.
    7. Blattert, Clemens & Eyvindson, Kyle & Hartikainen, Markus & Burgas, Daniel & Potterf, Maria & Lukkarinen, Jani & Snäll, Tord & Toraño-Caicoya, Astor & Mönkkönen, Mikko, 2022. "Sectoral policies cause incoherence in forest management and ecosystem service provisioning," Forest Policy and Economics, Elsevier, vol. 136(C).
    8. Brunette, M. & Holecy, J. & Sedliak, M. & Tucek, J. & Hanewinkel, M., 2015. "An actuarial model of forest insurance against multiple natural hazards in fir (Abies Alba Mill.) stands in Slovakia," Forest Policy and Economics, Elsevier, vol. 55(C), pages 46-57.
    9. Muhammad Mohsin Khan & Muhammad Jehanzeb Masud Cheema & Talha Mahmood & Saddam Hussain & Hafiz Muhammad Nauman & Mohsin Nawaz & Muhammad Saifullah, 2020. "Crop Area Mapping By Intelligent Pixel Information Inferred Using 250m Modis Vegetation Timeseries In Transboundary Indus Basin," Big Data In Water Resources Engineering (BDWRE), Zibeline International Publishing, vol. 1(2), pages 32-35, February.
    10. Imran, Muhammad Ali & Ali, Asghar & Ashfaq, Muhammad & Hassan, Sarfraz & Culas, Richard & Ma, Chunbo, 2019. "Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton," Land Use Policy, Elsevier, vol. 88(C).
    11. Julia Weiss & Livio Ferrante & Mariano Soler-Porta, 2021. "There Is No Place like Home! How Willing Are Young Adults to Move to Find a Job?," Sustainability, MDPI, vol. 13(13), pages 1-20, July.
    12. Abdul Mannan & Fan Yongxiang & Tauheed Ullah Khan & Syed Moazzam Nizami & Beckline Mukete & Adnan Ahmad & Ummay Amara & Jincheng Liu & Mamoona Wali Muhammad, 2021. "Urban Growth Patterns and Forest Carbon Dynamics in the Metropolitan Twin Cities of Islamabad and Rawalpindi, Pakistan," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    13. Collins C. Okolie & Gideon Danso-Abbeam & Okechukwu Groupson-Paul & Abiodun A. Ogundeji, 2022. "Climate-Smart Agriculture Amidst Climate Change to Enhance Agricultural Production: A Bibliometric Analysis," Land, MDPI, vol. 12(1), pages 1-23, December.
    14. Rana Muhammad Amir & Sikandar Ali & Muhammad Jehanzeb Masud Cheema & Saddam Hussain & Muhammad Sohail Waqas & Rao Husnain Arshad & Muhammad Salam & Ahsan Raza & Muhammad Aslam, 2020. "Estimating Sediment Yield At Tarbela Dam And Flood Forecasting Through Continuous Precipitation-Runoff Modeling Of Upper Indus Basin," Big Data In Water Resources Engineering (BDWRE), Zibeline International Publishing, vol. 1(2), pages 43-48, March.
    15. Thomas, J. & Brunette, M. & Leblois, A., 2022. "The determinants of adapting forest management practices to climate change: Lessons from a survey of French private forest owners," Forest Policy and Economics, Elsevier, vol. 135(C).
    16. Janusz Szmyt & Monika Dering, 2024. "Adaptive Silviculture and Climate Change—A Forced Marriage of the 21st Century?," Sustainability, MDPI, vol. 16(7), pages 1-31, March.
    17. Noor ul Ain Binte Wasif Ali & Sarah Amir & Kanwar Muhammad Javed Iqbal & Ashfaq Ahmad Shah & Zafeer Saqib & Nadia Akhtar & Wahid Ullah & Muhammad Atiq Ur Rehman Tariq, 2022. "Analysis of Land Surface Temperature Dynamics in Islamabad by Using MODIS Remote Sensing Data," Sustainability, MDPI, vol. 14(16), pages 1-15, August.
    18. Maurice Osewe & Chris Miyinzi Mwungu & Aijun Liu, 2020. "Does Minimum Tillage Improve Smallholder Farmers’ Welfare? Evidence from Southern Tanzania," Land, MDPI, vol. 9(12), pages 1-12, December.
    19. Wojciech Sroka & Dariusz Żmija, 2021. "Farming Systems Changes in the Urban Shadow: A Mixed Approach Based on Statistical Analysis and Expert Surveys," Agriculture, MDPI, vol. 11(5), pages 1-29, May.
    20. Vedel, Suzanne Elizabeth & Jacobsen, Jette Bredahl & Thorsen, Bo Jellesmark, 2015. "Forest owners' willingness to accept contracts for ecosystem service provision is sensitive to additionality," Ecological Economics, Elsevier, vol. 113(C), pages 15-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3572-:d:1069181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.