IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1008-d1026275.html
   My bibliography  Save this article

Improvement Mechanism of the Mechanical Properties and Pore Structure of Rubber Lightweight Aggregate Concrete with S95 Slag

Author

Listed:
  • Zihao Guo

    (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Hailong Wang

    (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
    Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in Inner Mongolia Section of Yellow River Basin, Hohhot 010018, China)

  • Song Sun

    (Gansu Provincial Seismological Bureau, Lanzhou 730000, China)

  • Shuai Feng

    (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Libin Shu

    (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Chao Tang

    (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China)

Abstract

This paper used natural pumice from the Inner Mongolia region as coarse aggregate to produce a lightweight concrete mix with a 3% rubber particle (20 mesh) content and dissimilar slag contents (0%, 5%, 10%, 15%, 20%, 25%, and 30%). It measured the compressive strength in five periods (3, 7, 14, 21, and 28 d). It also observed the development of the microstructure and measured the air content and pore distribution of the concrete using environmental scanning electron microscopy and nuclear magnetic resonance. A microtest combined with macroscopic mechanical experiments were used to analyze the influence on the mechanical properties of the rubber lightweight aggregate by the content of the S95 slag. The results showed that slag can improve the microstructure of rubber lightweight aggregate concrete. It hydrated the products, optimized the porous structure, and enhanced the compressive strength of the rubber lightweight aggregate concrete at 28 days, with excellent results regarding the air entraining. The best compressive strength of the rubber powder lightweight aggregate concrete at 28 days was when the content of the slag was 15%. An Atzeni pore-structure–strength model was introduced that contained a cement mass fraction. The results of the fitting indicate that the pore structure located at 0.1~1 μm had a marked influence on the mechanical properties of the rubber powder concrete.

Suggested Citation

  • Zihao Guo & Hailong Wang & Song Sun & Shuai Feng & Libin Shu & Chao Tang, 2023. "Improvement Mechanism of the Mechanical Properties and Pore Structure of Rubber Lightweight Aggregate Concrete with S95 Slag," Sustainability, MDPI, vol. 15(2), pages 1-11, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1008-:d:1026275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1008/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1008/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Jin-Hua & Fleiter, Tobias & Eichhammer, Wolfgang & Fan, Ying, 2012. "Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis," Energy Policy, Elsevier, vol. 50(C), pages 821-832.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    2. Yang, Jing & Song, Kaihui & Hou, Jian & Zhang, Peidong & Wu, Jinhu, 2017. "Temporal and spacial dynamics of bioenergy-related CO2 emissions and underlying forces analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1323-1330.
    3. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    4. Hu, Yi & Yin, Zhifeng & Ma, Jian & Du, Wencui & Liu, Danhe & Sun, Luxi, 2017. "Determinants of GHG emissions for a municipal economy: Structural decomposition analysis of Chongqing," Applied Energy, Elsevier, vol. 196(C), pages 162-169.
    5. Jianguo Zhou & Baoling Jin & Shijuan Du & Ping Zhang, 2018. "Scenario Analysis of Carbon Emissions of Beijing-Tianjin-Hebei," Energies, MDPI, vol. 11(6), pages 1-17, June.
    6. Shen, Chong & Zhang, Maoyong & Li, Xianting, 2017. "Experimental investigation on the thermal performance of cooling pipes embedded in a graphitization furnace," Energy, Elsevier, vol. 121(C), pages 55-65.
    7. Xiangzhao FENG & Oleg LUGOVOY & Sheng YAN & Hu QIN, 2016. "Co-Benefits of CO2 and NOx Emission Control in China’s Cement Industry," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-20, December.
    8. Yang, Yi & Yuan, Zhuqing & Yang, Shengnan, 2022. "Difference in the drivers of industrial carbon emission costs determines the diverse policies in middle-income regions: A case of northwestern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.
    10. Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & Mima, Silvana & van Vuuren, Detlef P. & Worrell, Ernst, 2019. "The scope for better industry representation in long-term energy models: Modeling the cement industry," Applied Energy, Elsevier, vol. 240(C), pages 964-985.
    11. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
    12. Alajmi, Reema Gh, 2021. "Factors that impact greenhouse gas emissions in Saudi Arabia: Decomposition analysis using LMDI," Energy Policy, Elsevier, vol. 156(C).
    13. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    14. Li, Nan & Ma, Ding & Chen, Wenying, 2017. "Quantifying the impacts of decarbonisation in China’s cement sector: A perspective from an integrated assessment approach," Applied Energy, Elsevier, vol. 185(P2), pages 1840-1848.
    15. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
    16. Wu, Jianxin & Xu, Hui & Tang, Kai, 2021. "Industrial agglomeration, CO2 emissions and regional development programs: A decomposition analysis based on 286 Chinese cities," Energy, Elsevier, vol. 225(C).
    17. Liu, Gengyuan & Hao, Yan & Zhou, Yun & Yang, Zhifeng & Zhang, Yan & Su, Meirong, 2016. "China's low-carbon industrial transformation assessment based on Logarithmic Mean Divisia Index model," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 156-170.
    18. Zhang, Wei & Li, Ke & Zhou, Dequn & Zhang, Wenrui & Gao, Hui, 2016. "Decomposition of intensity of energy-related CO2 emission in Chinese provinces using the LMDI method," Energy Policy, Elsevier, vol. 92(C), pages 369-381.
    19. Huang, He & Hong, Jingke & Wang, Xianzhu & Chang-Richards, Alice & Zhang, Jingxiao & Qiao, Bei, 2022. "A spatiotemporal analysis of the driving forces behind the energy interactions of the Chinese economy: Evidence from static and dynamic perspectives," Energy, Elsevier, vol. 239(PB).
    20. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1008-:d:1026275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.