IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16620-d1295297.html
   My bibliography  Save this article

Feasibility Analysis of Offshore Wind Power Projects in the Caribbean Region of Colombia: A Case Study Using FAHP–GIS

Author

Listed:
  • Adalberto Ospino Castro

    (Departamento de Energía, Universidad de la Costa, Barranquilla 080002, Colombia)

  • Carlos Robles-Algarín

    (Facultad de Ingeniería, Universidad del Magdalena, Santa Marta 470003, Colombia)

  • Luis Hernández-Callejo

    (Departamento de Ingeniería Agrícola y Forestal, Universidad de Valladolid, 42004 Soria, Spain)

  • Yecid Muñoz Maldonado

    (Facultad de Ingeniería, Universidad Autónoma de Bucaramanga, Bucaramanga 680003, Colombia)

  • Amanda Mangones Cordero

    (Departamento de Energía, Universidad de la Costa, Barranquilla 080002, Colombia)

Abstract

Planning for offshore wind energy projects is intricate due to the consideration of multiple variables in identifying optimal project areas. The primary challenge lies in locating suitable sites, a process that often necessitates extensive feasibility studies spanning several years. The primary goal of this study is to apply the Fuzzy Analytic Hierarchy Process (FAHP) to prioritize criteria and sub-criteria, facilitating decision-making in choosing appropriate locations for offshore wind projects in the Colombian Caribbean Sea. The weights derived from FAHP were utilized in a Geographic Information System (GIS) to analyze the physical characteristics of the Caribbean Sea’s surface. This tool plays a critical role in evaluating and selecting sites that fulfill established criteria, providing a database of indicators and map visualizations. Four criteria were defined: technical, environmental, social, and economic, along with fourteen sub-criteria, which were prioritized through FAHP based on expert judgment. The results revealed that the most relevant sub-criteria were protected areas and wind speed. Utilizing the ArcGIS Pro software, five zones meeting the predetermined criteria were identified, defining the most feasible areas for offshore wind farm installation, located in the departments of Guajira, Magdalena, Atlántico and Bolívar. The GIS–FAHP methods proved to be useful for feasibility analysis.

Suggested Citation

  • Adalberto Ospino Castro & Carlos Robles-Algarín & Luis Hernández-Callejo & Yecid Muñoz Maldonado & Amanda Mangones Cordero, 2023. "Feasibility Analysis of Offshore Wind Power Projects in the Caribbean Region of Colombia: A Case Study Using FAHP–GIS," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16620-:d:1295297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arthur Leandro Guerra Pires & Paulo Rotella Junior & Sandra Naomi Morioka & Luiz Célio Souza Rocha & Ivan Bolis, 2021. "Main Trends and Criteria Adopted in Economic Feasibility Studies of Offshore Wind Energy: A Systematic Literature Review," Energies, MDPI, vol. 15(1), pages 1-24, December.
    2. Nezhad, M. Majidi & Neshat, M. & Groppi, D. & Marzialetti, P. & Heydari, A. & Sylaios, G. & Garcia, D. Astiaso, 2021. "A primary offshore wind farm site assessment using reanalysis data: a case study for Samothraki island," Renewable Energy, Elsevier, vol. 172(C), pages 667-679.
    3. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    4. Schallenberg-Rodríguez, Julieta & García Montesdeoca, Nuria, 2018. "Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands," Energy, Elsevier, vol. 143(C), pages 91-103.
    5. Christian Moreno & Adalberto Ospino-Castro & Carlos Robles-Algar n, 2022. "Decision-Making Support Framework for Electricity Supply in Non-Interconnected Rural Areas Based on FAHP," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 79-87, September.
    6. Gil-García, Isabel C. & Ramos-Escudero, Adela & García-Cascales, M.S. & Dagher, Habib & Molina-García, A., 2022. "Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case," Renewable Energy, Elsevier, vol. 183(C), pages 130-147.
    7. Mahdy, Mostafa & Bahaj, AbuBakr S., 2018. "Multi criteria decision analysis for offshore wind energy potential in Egypt," Renewable Energy, Elsevier, vol. 118(C), pages 278-289.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
    2. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    3. Virtanen, E.A. & Lappalainen, J. & Nurmi, M. & Viitasalo, M. & Tikanmäki, M. & Heinonen, J. & Atlaskin, E. & Kallasvuo, M. & Tikkanen, H. & Moilanen, A., 2022. "Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Ivana Racetin & Nives Ostojić Škomrlj & Marina Peko & Mladen Zrinjski, 2023. "Fuzzy Multi-Criteria Decision for Geoinformation System-Based Offshore Wind Farm Positioning in Croatia," Energies, MDPI, vol. 16(13), pages 1-18, June.
    5. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    6. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    7. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Wimhurst, Joshua J. & Greene, J. Scott & Koch, Jennifer, 2023. "Predicting commercial wind farm site suitability in the conterminous United States using a logistic regression model," Applied Energy, Elsevier, vol. 352(C).
    9. Gkeka-Serpetsidaki, Pandora & Tsoutsos, Theocharis, 2022. "A methodological framework for optimal siting of offshore wind farms: A case study on the island of Crete," Energy, Elsevier, vol. 239(PD).
    10. Peters, Jared L. & Remmers, Tiny & Wheeler, Andrew J. & Murphy, Jimmy & Cummins, Valerie, 2020. "A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    11. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    12. Sofia Spyridonidou & Dimitra G. Vagiona & Eva Loukogeorgaki, 2020. "Strategic Planning of Offshore Wind Farms in Greece," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    13. Waewsak, Jompob & Ali, Shahid & Natee, Warut & Kongruang, Chuleerat & Chancham, Chana & Gagnon, Yves, 2020. "Assessment of hybrid, firm renewable energy-based power plants: Application in the southernmost region of Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Asadi, Meysam & Ramezanzade, Mohsen & Pourhossein, Kazem, 2023. "A global evaluation model applied to wind power plant site selection," Applied Energy, Elsevier, vol. 336(C).
    15. Wang, Yongli & Tao, Siyi & Chen, Xin & Huang, Feifei & Xu, Xiaomin & Liu, Xiaoli & Liu, Yang & Liu, Lin, 2022. "Method multi-criteria decision-making method for site selection analysis and evaluation of urban integrated energy stations based on geographic information system," Renewable Energy, Elsevier, vol. 194(C), pages 273-292.
    16. Gil-García, Isabel C. & Ramos-Escudero, Adela & García-Cascales, M.S. & Dagher, Habib & Molina-García, A., 2022. "Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case," Renewable Energy, Elsevier, vol. 183(C), pages 130-147.
    17. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
    18. Hugo Díaz & Carlos Guedes Soares, 2021. "A Multi-Criteria Approach to Evaluate Floating Offshore Wind Farms Siting in the Canary Islands (Spain)," Energies, MDPI, vol. 14(4), pages 1-18, February.
    19. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    20. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16620-:d:1295297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.