IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i23p16371-d1289504.html
   My bibliography  Save this article

Economic Evaluation and Technoeconomic Resilience Analysis of Two Routes for Hydrogen Production via Indirect Gasification in North Colombia

Author

Listed:
  • Ángel Darío González-Delgado

    (Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, Universidad de Cartagena, Cartagena de Indias 130015, Colombia)

  • Alexander Vargas-Mira

    (Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, Universidad de Cartagena, Cartagena de Indias 130015, Colombia)

  • Carlos Zuluaga-García

    (Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, Universidad de Cartagena, Cartagena de Indias 130015, Colombia)

Abstract

Hydrogen has become a prospective energy carrier for a cleaner, more sustainable economy, offering carbon-free energy to reduce reliance on fossil fuels and address climate change challenges. However, hydrogen production faces significant technological and economic hurdles that must be overcome to reveal its highest potential. This study focused on evaluating the economics and technoeconomic resilience of two large-scale hydrogen production routes from African palm empty fruit bunches (EFB) by indirect gasification. Computer-aided process engineering (CAPE) assessed multiple scenarios to identify bottlenecks and optimize economic performance indicators like gross profits, including depreciation, after-tax profitability, payback period, and net present value. Resilience for each route was also assessed, considering raw material costs and the market price of hydrogen in relation to gross profits and after-tax profitability. Route 1 achieved a gross profit (DGP) of USD 47.12 million and a profit after taxes (PAT) of USD 28.74 million, while Route 2 achieved a DGP of USD 46.53 million and a PAT of USD 28.38 million. The results indicated that Route 2, involving hydrogen production through an indirect gasification reactor with a Selexol solvent unit for carbon dioxide removal, demonstrated greater resilience in terms of raw material costs and product selling price.

Suggested Citation

  • Ángel Darío González-Delgado & Alexander Vargas-Mira & Carlos Zuluaga-García, 2023. "Economic Evaluation and Technoeconomic Resilience Analysis of Two Routes for Hydrogen Production via Indirect Gasification in North Colombia," Sustainability, MDPI, vol. 15(23), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:23:p:16371-:d:1289504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/23/16371/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/23/16371/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Penner, S.S., 2006. "Steps toward the hydrogen economy," Energy, Elsevier, vol. 31(1), pages 33-43.
    2. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Can Yin & Lifu Jin, 2025. "Estimating Hydrogen Price Based on Combined Machine Learning Models by 2060: Especially Comparing Regional Variations in China," Sustainability, MDPI, vol. 17(3), pages 1-16, January.
    2. Jamie Rainey, 2024. "Exploring Technological Resilience in Hydrogen Production: The Role of Epigenetic Mechanisms and Sustainable Dwelling Designs," Post-Print hal-04670052, HAL.
    3. Olaoluwa Paul Aasa & Sarah Phoya & Rehema Joseph Monko & Innocent Musonda, 2025. "Integrating Sustainability and Resilience Objectives for Energy Decisions: A Systematic Review," Resources, MDPI, vol. 14(6), pages 1-41, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    2. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    3. Botterud, Audun & Yildiz, Bilge & Conzelmann, Guenter & Petri, Mark C., 2008. "Nuclear hydrogen: An assessment of product flexibility and market viability," Energy Policy, Elsevier, vol. 36(10), pages 3961-3973, October.
    4. Abdulrahman A. Al-Rabiah & Jiyad N. Al-Dawsari & Abdelhamid M. Ajbar & Rayan K. Al Darwish & Omar Y. Abdelaziz, 2022. "Development of a Biomass Gasification Process for the Coproduction of Methanol and Power from Red Sea Microalgae," Energies, MDPI, vol. 15(21), pages 1-14, October.
    5. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
    6. Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
    7. Sunyong Park & Seon Yeop Kim & Ha Eun Kim & Kwang Cheol Oh & Seok Jun Kim & La Hoon Cho & Young Kwang Jeon & DaeHyun Kim, 2023. "Calorific Value Prediction Model Using Structure Composition of Heat-Treated Lignocellulosic Biomass," Energies, MDPI, vol. 16(23), pages 1-15, December.
    8. Marc A. Rosen, 2012. "Engineering Sustainability: A Technical Approach to Sustainability," Sustainability, MDPI, vol. 4(9), pages 1-23, September.
    9. Sara Maen Asaad & Abrar Inayat & Lisandra Rocha-Meneses & Farrukh Jamil & Chaouki Ghenai & Abdallah Shanableh, 2022. "Prospective of Response Surface Methodology as an Optimization Tool for Biomass Gasification Process," Energies, MDPI, vol. 16(1), pages 1-18, December.
    10. Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2010. "Techno-economical optimization of the production of hydrogen from PV-Wind systems connected to the electrical grid," Renewable Energy, Elsevier, vol. 35(4), pages 747-758.
    11. Santos, D.M.F. & Šljukić, B. & Sequeira, C.A.C. & Macciò, D. & Saccone, A. & Figueiredo, J.L., 2013. "Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinum--dysprosium alloys," Energy, Elsevier, vol. 50(C), pages 486-492.
    12. Fabrizio Ganci & Tracy Baguet & Giuseppe Aiello & Valentino Cusumano & Philippe Mandin & Carmelo Sunseri & Rosalinda Inguanta, 2019. "Nanostructured Ni Based Anode and Cathode for Alkaline Water Electrolyzers," Energies, MDPI, vol. 12(19), pages 1-17, September.
    13. Shih, Yu-Jen & Su, Chia-Chi & Huang, Yao-Hui & Lu, Ming-Chun, 2013. "SiO2-supported ferromagnetic catalysts for hydrogen generation from alkaline NaBH4 (sodium borohydride) solution," Energy, Elsevier, vol. 54(C), pages 263-270.
    14. Betancourt-Torcat, Alberto & Elkamel, Ali & Ricardez-Sandoval, Luis, 2012. "A modeling study of the effect of carbon dioxide mitigation strategies, natural gas prices and steam consumption on the Canadian Oil Sands operations," Energy, Elsevier, vol. 45(1), pages 1018-1033.
    15. Olafsson, Snjolfur & Cook, David & Davidsdottir, Brynhildur & Johannsdottir, Lara, 2014. "Measuring countries׳ environmental sustainability performance – A review and case study of Iceland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 934-948.
    16. Ortigueira, Joana & Pinto, Tiago & Gouveia, Luísa & Moura, Patrícia, 2015. "Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum," Energy, Elsevier, vol. 88(C), pages 528-536.
    17. Alexander I. Balitskii & Maria R. Havrilyuk & Valentina O. Balitska & Valeriі O. Kolesnikov & Ljubomyr M. Ivaskevych, 2023. "Increasing Turbine Hall Safety by Using Fire-Resistant, Hydrogen-Containing Lubricant Cooling Liquid for Rotor Steel Mechanical Treatment," Energies, MDPI, vol. 16(1), pages 1-25, January.
    18. Ümit Işıkdağ & Gebrail Bekdaş & Yaren Aydın & Sudi Apak & Junhee Hong & Zong Woo Geem, 2024. "Adaptive Neural Architecture Search Using Meta-Heuristics: Discovering Fine-Tuned Predictive Models for Photocatalytic CO 2 Reduction," Sustainability, MDPI, vol. 16(23), pages 1-29, December.
    19. Bareschino, P. & Mancusi, E. & Tregambi, C. & Pepe, F. & Urciuolo, M. & Brachi, P. & Ruoppolo, G., 2021. "Integration of biomasses gasification and renewable-energies-driven water electrolysis for methane production," Energy, Elsevier, vol. 230(C).
    20. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:23:p:16371-:d:1289504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.