IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i4p747-758.html
   My bibliography  Save this article

Techno-economical optimization of the production of hydrogen from PV-Wind systems connected to the electrical grid

Author

Listed:
  • Bernal-Agustín, José L.
  • Dufo-López, Rodolfo

Abstract

This paper shows a complete techno-economical analysis on facilities that make use of wind turbines and photovoltaic (PV) generators for the production of hydrogen by means of electrolysis. Besides, the surplus of electrical energy produced can be sold and injected to the electrical grid.

Suggested Citation

  • Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2010. "Techno-economical optimization of the production of hydrogen from PV-Wind systems connected to the electrical grid," Renewable Energy, Elsevier, vol. 35(4), pages 747-758.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:4:p:747-758
    DOI: 10.1016/j.renene.2009.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109004303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Penner, S.S., 2006. "Steps toward the hydrogen economy," Energy, Elsevier, vol. 31(1), pages 33-43.
    2. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Contreras, Javier, 2007. "Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage," Renewable Energy, Elsevier, vol. 32(7), pages 1102-1126.
    3. Anderson, Dennis & Leach, Matthew, 2004. "Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen," Energy Policy, Elsevier, vol. 32(14), pages 1603-1614, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    2. do Sacramento, E.M. & Carvalho, Paulo C.M. & de Lima, L.C. & Veziroglu, T.N., 2013. "Feasibility study for the transition towards a hydrogen economy: A case study in Brazil," Energy Policy, Elsevier, vol. 62(C), pages 3-9.
    3. Rehman, Shafiqur & Mahbub Alam, Md. & Meyer, J.P. & Al-Hadhrami, Luai M., 2012. "Feasibility study of a wind–pv–diesel hybrid power system for a village," Renewable Energy, Elsevier, vol. 38(1), pages 258-268.
    4. Daniel Węcel & Michał Jurczyk & Wojciech Uchman & Anna Skorek-Osikowska, 2020. "Investigation on System for Renewable Electricity Storage in Small Scale Integrating Photovoltaics, Batteries, and Hydrogen Generator," Energies, MDPI, vol. 13(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Domínguez-Navarro, José A., 2009. "Generation management using batteries in wind farms: Economical and technical analysis for Spain," Energy Policy, Elsevier, vol. 37(1), pages 126-139, January.
    2. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    3. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    4. Botterud, Audun & Yildiz, Bilge & Conzelmann, Guenter & Petri, Mark C., 2008. "Nuclear hydrogen: An assessment of product flexibility and market viability," Energy Policy, Elsevier, vol. 36(10), pages 3961-3973, October.
    5. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using Particle Swarm Optimization," Renewable Energy, Elsevier, vol. 63(C), pages 194-204.
    6. Muhammad Umar Afzaal & Intisar Ali Sajjad & Ahmed Bilal Awan & Kashif Nisar Paracha & Muhammad Faisal Nadeem Khan & Abdul Rauf Bhatti & Muhammad Zubair & Waqas ur Rehman & Salman Amin & Shaikh Saaqib , 2020. "Probabilistic Generation Model of Solar Irradiance for Grid Connected Photovoltaic Systems Using Weibull Distribution," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    7. Erick Alves & Santiago Sanchez & Danilo Brandao & Elisabetta Tedeschi, 2019. "Smart Load Management with Energy Storage for Power Quality Enhancement in Wind-Powered Oil and Gas Applications," Energies, MDPI, vol. 12(15), pages 1-15, August.
    8. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
    9. Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
    10. Mengjun Ming & Rui Wang & Yabing Zha & Tao Zhang, 2017. "Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm," Energies, MDPI, vol. 10(5), pages 1-15, May.
    11. Milo, Aitor & Gaztañaga, Haizea & Etxeberria-Otadui, Ion & Bacha, Seddik & Rodríguez, Pedro, 2011. "Optimal economic exploitation of hydrogen based grid-friendly zero energy buildings," Renewable Energy, Elsevier, vol. 36(1), pages 197-205.
    12. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    13. Talent, Orlando & Du, Haiping, 2018. "Optimal sizing and energy scheduling of photovoltaic-battery systems under different tariff structures," Renewable Energy, Elsevier, vol. 129(PA), pages 513-526.
    14. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    15. Nithya Saiprasad & Akhtar Kalam & Aladin Zayegh, 2019. "Triple Bottom Line Analysis and Optimum Sizing of Renewable Energy Using Improved Hybrid Optimization Employing the Genetic Algorithm: A Case Study from India," Energies, MDPI, vol. 12(3), pages 1-23, January.
    16. Gupta, Ajai & Saini, R.P. & Sharma, M.P., 2011. "Modelling of hybrid energy system—Part II: Combined dispatch strategies and solution algorithm," Renewable Energy, Elsevier, vol. 36(2), pages 466-473.
    17. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    18. Marc A. Rosen, 2012. "Engineering Sustainability: A Technical Approach to Sustainability," Sustainability, MDPI, vol. 4(9), pages 1-23, September.
    19. Posso, F. & Contreras, A. & Veziroglu, A., 2009. "The use of hydrogen in the rural sector in Venezuela: Technical and financial study of the storage phase," Renewable Energy, Elsevier, vol. 34(5), pages 1234-1240.
    20. Isa, Normazlina Mat & Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2016. "A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital," Energy, Elsevier, vol. 112(C), pages 75-90.

    More about this item

    Keywords

    Photovoltaic; Wind; Hydrogen;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:4:p:747-758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.