IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3669-d270668.html
   My bibliography  Save this article

Nanostructured Ni Based Anode and Cathode for Alkaline Water Electrolyzers

Author

Listed:
  • Fabrizio Ganci

    (Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy)

  • Tracy Baguet

    (Département Génie thermique et énergie, Université de Bretagne Sud, IRDL UMR CNRS 6027, 56325 Lorient, France)

  • Giuseppe Aiello

    (Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy)

  • Valentino Cusumano

    (Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy)

  • Philippe Mandin

    (Département Génie thermique et énergie, Université de Bretagne Sud, IRDL UMR CNRS 6027, 56325 Lorient, France)

  • Carmelo Sunseri

    (Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy)

  • Rosalinda Inguanta

    (Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy)

Abstract

Owing to the progressive abandoning of the fossil fuels and the increase of atmospheric CO 2 concentration, the use of renewable energies is strongly encouraged. The hydrogen economy provides a very interesting scenario. In fact, hydrogen is a valuable energy carrier and can act as a storage medium as well to balance the discontinuity of the renewable sources. In order to exploit the potential of hydrogen it must be made available in adequate quantities and at an affordable price. Both goals can be potentially achieved through the electrochemical water splitting, which is an environmentally friendly process as well as the electrons and water are the only reagents. However, these devices still require a lot of research to reduce costs and increase efficiency. An approach to improve their performance is based on nanostructured electrodes characterized by high electrocatalytic activity. In this work, we show that by using template electrosynthesis it is possible to fabricate Ni nanowires featuring a very high surface area. In particular, we found that water-alkaline electrolyzers with Ni nanowires electrodes covered by different electrocatalyst have good and stable performance at room temperature as well. Besides, the results concern nickel-cobalt nanowires electrodes for both hydrogen and oxygen evolution reaction will be presented and discussed. Finally, preliminary tests concerning the use of Ni foam differently functionalized will be shown. For each electrode, electrochemical and electrocatalytic tests aimed to establishing the performance of the electrolyzers were carried out. Long term amperostatic test carried out in aqueous solution of KOH will be reported as well.

Suggested Citation

  • Fabrizio Ganci & Tracy Baguet & Giuseppe Aiello & Valentino Cusumano & Philippe Mandin & Carmelo Sunseri & Rosalinda Inguanta, 2019. "Nanostructured Ni Based Anode and Cathode for Alkaline Water Electrolyzers," Energies, MDPI, vol. 12(19), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3669-:d:270668
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3669/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3669/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Penner, S.S., 2006. "Steps toward the hydrogen economy," Energy, Elsevier, vol. 31(1), pages 33-43.
    2. Kothari, Richa & Buddhi, D. & Sawhney, R.L., 2008. "Comparison of environmental and economic aspects of various hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 553-563, February.
    3. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    4. Ganci, Fabrizio & Lombardo, Salvatore & Sunseri, Carmelo & Inguanta, Rosalinda, 2018. "Nanostructured electrodes for hydrogen production in alkaline electrolyzer," Renewable Energy, Elsevier, vol. 123(C), pages 117-124.
    5. Ahmad, H. & Kamarudin, S.K. & Minggu, L.J. & Kassim, M., 2015. "Hydrogen from photo-catalytic water splitting process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 599-610.
    6. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuraya Angeles-Olvera & Alfonso Crespo-Yapur & Oliver Rodríguez & Jorge L. Cholula-Díaz & Luz María Martínez & Marcelo Videa, 2022. "Nickel-Based Electrocatalysts for Water Electrolysis," Energies, MDPI, vol. 15(5), pages 1-35, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
    2. Olafsson, Snjolfur & Cook, David & Davidsdottir, Brynhildur & Johannsdottir, Lara, 2014. "Measuring countries׳ environmental sustainability performance – A review and case study of Iceland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 934-948.
    3. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2016. "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 850-866.
    4. Laura Clarizia & Danilo Russo & Ilaria Di Somma & Roberto Andreozzi & Raffaele Marotta, 2017. "Hydrogen Generation through Solar Photocatalytic Processes: A Review of the Configuration and the Properties of Effective Metal-Based Semiconductor Nanomaterials," Energies, MDPI, vol. 10(10), pages 1-21, October.
    5. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    6. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    7. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    8. Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.
    9. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    10. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    11. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    12. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    13. Balcombe, Paul & Speirs, Jamie & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "The carbon credentials of hydrogen gas networks and supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1077-1088.
    14. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    15. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    16. Freida Ozavize Ayodele & Siti Indati Mustapa & Bamidele Victor Ayodele & Norsyahida Mohammad, 2020. "An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    17. Fang, Yiping & Wei, Yanqiang, 2013. "Climate change adaptation on the Qinghai–Tibetan Plateau: The importance of solar energy utilization for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 508-518.
    18. Zhang, Zhonghao & Guo, Mengdi & Yu, Zhonghao & Yao, Siyue & Wang, Jin & Qiu, Diankai & Peng, Linfa, 2022. "A novel cooperative design with optimized flow field on bipolar plates and hybrid wettability gas diffusion layer for proton exchange membrane unitized regenerative fuel cell," Energy, Elsevier, vol. 239(PD).
    19. Adrian Neacsa & Cristian Nicolae Eparu & Cașen Panaitescu & Doru Bogdan Stoica & Bogdan Ionete & Alina Prundurel & Sorin Gal, 2023. "Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society," Energies, MDPI, vol. 16(15), pages 1-38, August.
    20. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3669-:d:270668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.