IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i21p15541-d1272615.html
   My bibliography  Save this article

Multi-Criteria Selection of Electric Delivery Vehicles Using Fuzzy–Rough Methods

Author

Listed:
  • Ning Wang

    (School of Management, Shandong Technology and Business University, No. 191 Binhai Zhong Road, Laishan District, Yantai 264005, China)

  • Yong Xu

    (School of Management, Shandong Technology and Business University, No. 191 Binhai Zhong Road, Laishan District, Yantai 264005, China)

  • Adis Puška

    (Department of Public Safety, Government of Brčko District of Bosnia and Herzegovina, Bulevara Mira 1, 76100 Brčko, Bosnia and Herzegovina)

  • Željko Stević

    (Faculty of Transport and Traffic Engineering, University of East Sarajevo, Vojvode Mišića 52, 74000 Doboj, Bosnia and Herzegovina)

  • Adel Fahad Alrasheedi

    (Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia)

Abstract

Urban logistics implementation causes environmental pollution; therefore, it is necessary to consider the impact on the environment when carrying out such logistics. Electric vehicles are alternative vehicles that reduce the impact on the environment. For this reason, this study investigated which electric vehicle has the best indicators for urban logistics. An innovative approach when selecting such vehicles is the application of a fuzzy–rough method based on expert decision making, whereby the decision-making process is adapted to the decision makers. In this case, two methods of multi-criteria decision making (MCDM) were used: SWARA (stepwise weight assessment ratio analysis) and MARCOS (measurement alternatives and ranking according to compromise solution). By applying the fuzzy–rough approach, uncertainty is included when making a decision, and it is possible to use linguistic values. The results obtained by the fuzzy–rough SWARA method showed that the range and price of electric vehicles have the greatest influence on the selection of an electric delivery vehicle. The results of applying the fuzzy–rough MARCOS method indicated that the Kangoo E-Tech Electric vehicle has the best characteristics according to experts’ estimates. These results were confirmed by validation and the application of sensitivity analysis. In urban logistics, the selection of an electric delivery vehicle helps to reduce the impact on the environment. By applying the fuzzy–rough approach, the decision-making problem is adjusted to the preferences of the decision makers who play a major role in purchasing a vehicle.

Suggested Citation

  • Ning Wang & Yong Xu & Adis Puška & Željko Stević & Adel Fahad Alrasheedi, 2023. "Multi-Criteria Selection of Electric Delivery Vehicles Using Fuzzy–Rough Methods," Sustainability, MDPI, vol. 15(21), pages 1-25, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15541-:d:1272615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/21/15541/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/21/15541/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    2. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    3. Xuemei Chen & Bin Zhou & Anđelka Štilić & Željko Stević & Adis Puška, 2023. "A Fuzzy–Rough MCDM Approach for Selecting Green Suppliers in the Furniture Manufacturing Industry: A Case Study of Eco-Friendly Material Production," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gurusamy, Azhaganathan & Ashok, Bragadeshwaran & Alsaif, Faisal & Suresh, Vishnu, 2024. "Multifaceted multi-criteria decision making framework to prioritise the electric two-wheelers based on standard and regional driving cycles," Energy, Elsevier, vol. 305(C).
    2. Bošković, Sara & Švadlenka, Libor & Jovčić, Stefan & Simic, Vladimir & Dobrodolac, Momčilo & Elomiya, Akram, 2024. "Sustainable propulsion technology selection in penultimate mile delivery using the FullEX-AROMAN method," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    3. Elżbieta Broniewicz & Karolina Ogrodnik, 2025. "Application Potential of MCDM/MCDA Methods in Transport—Literature Review and Case Study," Sustainability, MDPI, vol. 17(17), pages 1-35, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    2. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).
    3. Samani, Ali Riahi & Talebian, Ahmadreza & Mishra, Sabyasachee & Golias, Mihalis, 2025. "Evaluating consumer shopping, delivery demands, and last-mile preferences: An integrated MDCEV-HCM approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 197(C).
    4. Ghoniem, Ahmed & Boz, Semih & El-Adle, Amro M., 2025. "Parcel delivery by vehicle and drone in ordered customer neighborhoods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 197(C).
    5. Jie Hu & Wentong Cao & Feng Jiang & Lingling Hu & Qian Chen & Weiguang Zheng & Junming Zhou, 2023. "Study on Multi-Objective Optimization of Power System Parameters of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    6. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    7. Hicham El Hadraoui & Mourad Zegrari & Fatima-Ezzahra Hammouch & Nasr Guennouni & Oussama Laayati & Ahmed Chebak, 2022. "Design of a Customizable Test Bench of an Electric Vehicle Powertrain for Learning Purposes Using Model-Based System Engineering," Sustainability, MDPI, vol. 14(17), pages 1-22, September.
    8. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    9. Vijoleta Vrhovac & Stana Vasić & Stevan Milisavljević & Branislav Dudić & Peter Štarchoň & Marina Žižakov, 2023. "Measuring E-Commerce User Experience in the Last-Mile Delivery," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    10. Wu, Yingwen & Ji, Yangjian, 2023. "Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining," Journal of Informetrics, Elsevier, vol. 17(2).
    11. Tingting Wang & Xin Liu & Dongchen Qin & Yuechen Duan, 2022. "Thermal Modeling and Prediction of The Lithium-ion Battery Based on Driving Behavior," Energies, MDPI, vol. 15(23), pages 1-22, November.
    12. Ataur Rahman & Kyaw Myo Aung & Sany Ihsan & Raja Mazuir Raja Ahsan Shah & Mansour Al Qubeissi & Mohannad T. Aljarrah, 2023. "Solar Energy Dependent Supercapacitor System with ANFIS Controller for Auxiliary Load of Electric Vehicles," Energies, MDPI, vol. 16(6), pages 1-23, March.
    13. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    14. Yuan Guan & Yao Li & Yue Deng & Gaoxiang Ni & Zifan Fang & Dong Huang, 2025. "Integrated Design and Dynamic Response Analysis of the EV Reducer Considering Mass Eccentricity," Energies, MDPI, vol. 18(3), pages 1-17, January.
    15. He, Hongwen & Han, Mo & Liu, Wei & Cao, Jianfei & Shi, Man & Zhou, Nana, 2022. "MPC-based longitudinal control strategy considering energy consumption for a dual-motor electric vehicle," Energy, Elsevier, vol. 253(C).
    16. Liu, Dan & Kaisar, Evangelos I. & Yang, Yang & Yan, Pengyu, 2022. "Physical Internet-enabled E-grocery delivery Network:A load-dependent two-echelon vehicle routing problem with mixed vehicles," International Journal of Production Economics, Elsevier, vol. 254(C).
    17. Pengxiang Song & Wenchuan Song & Ao Meng & Hongxue Li, 2024. "Adaptive Equivalent Factor-Based Energy Management Strategy for Plug-In Hybrid Electric Buses Considering Passenger Load Variations," Energies, MDPI, vol. 17(6), pages 1-30, March.
    18. Belma Turan & Vera Hemmelmayr & Allan Larsen & Jakob Puchinger, 2024. "Transition towards sustainable mobility: the role of transport optimization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(2), pages 435-456, June.
    19. Piotr Bielaczyc & Rafal Sala & Tomasz Meinicke, 2021. "Analysis of Technical Capabilities, Methodology and Test Results of a Light-Commercial Vehicle Conversion to Battery Electric Powertrain," Energies, MDPI, vol. 14(4), pages 1-18, February.
    20. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15541-:d:1272615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.