IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i21p15270-d1267254.html
   My bibliography  Save this article

Prediction of Heat and Cold Loads of Factory Mushroom Houses Based on EWT Decomposition

Author

Listed:
  • Hesen Zuo

    (School of Mechanical Engineering, Guangxi University, Nanning 530004, China
    Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Wengang Zheng

    (School of Mechanical Engineering, Guangxi University, Nanning 530004, China
    Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Mingfei Wang

    (Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Xin Zhang

    (Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

Abstract

Load forecasting has significant implications on optimizing the operation of air conditioning systems for industrial mushroom houses and energy saving. This research paper presents a novel approach for short-term load forecasting in mushroom houses, which face challenges in accurately modeling cold and heat loads due to the complex interplay of various factors, including climatic conditions, mushroom growth, and equipment operation. The proposed method combines empirical wavelet transform (EWT), hybrid autoregressive integrated moving average (ARIMA), convolutional neural network (CNN), and bi-directional long short-term memory (BiLSTM) with an attention mechanism (CNN-BiLSTM-Attention) to address these challenges. The first step of this method was to select input features via the Boruta algorithm. Then, the EWT method was used to decompose the load data of mushroom houses into four modal components. Subsequently, the Lempel–Ziv method was introduced to classify the modal components into high-frequency and low-frequency classes. CNN-BiLSTM-Attention and ARIMA prediction models were constructed for these two classes, respectively. Finally, the predictions from both classes were combined and reconstructed to obtain the final load forecasting value. The experimental results show that the Boruta algorithm selects key influential feature factors effectively. Compared to the Spearman and Pearson correlation coefficient methods, the mean absolute error (MAE) of the prediction results is reduced by 14.72% and 3.75%, respectively. Compared to the ensemble empirical mode decomposition (EEMD) method, the EWT method can reduce the decomposition reconstruction error by an order of magnitude of 10 3 , effectively improving the accuracy of the prediction model. The proposed model in this paper exhibits significant advantages in prediction performance compared to the single neural network model, with the MAE, root mean square error (RMSE), and mean absolute percentage error (MAPE) of the prediction results reduced by 31.06%, 26.52%, and 39.27%, respectively.

Suggested Citation

  • Hesen Zuo & Wengang Zheng & Mingfei Wang & Xin Zhang, 2023. "Prediction of Heat and Cold Loads of Factory Mushroom Houses Based on EWT Decomposition," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15270-:d:1267254
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/21/15270/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/21/15270/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang, Lei & He, Bin, 2023. "A deep learning framework using multi-feature fusion recurrent neural networks for energy consumption forecasting," Applied Energy, Elsevier, vol. 348(C).
    2. Buttitta, Giuseppina & Jones, Colin N. & Finn, Donal P., 2021. "Evaluation of advanced control strategies of electric thermal storage systems in residential building stock," Utilities Policy, Elsevier, vol. 69(C).
    3. Ahmad, Tanveer & Chen, Huanxin & Huang, Ronggeng & Yabin, Guo & Wang, Jiangyu & Shair, Jan & Azeem Akram, Hafiz Muhammad & Hassnain Mohsan, Syed Agha & Kazim, Muhammad, 2018. "Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment," Energy, Elsevier, vol. 158(C), pages 17-32.
    4. Hu, Jingfan & Zheng, Wandong & Zhang, Sirui & Li, Hao & Liu, Zijian & Zhang, Guo & Yang, Xu, 2021. "Thermal load prediction and operation optimization of office building with a zone-level artificial neural network and rule-based control," Applied Energy, Elsevier, vol. 300(C).
    5. Zheyu He & Rongheng Lin & Budan Wu & Xin Zhao & Hua Zou, 2023. "Pre-Attention Mechanism and Convolutional Neural Network Based Multivariate Load Prediction for Demand Response," Energies, MDPI, vol. 16(8), pages 1-13, April.
    6. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2020. "Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting," Energies, MDPI, vol. 13(2), pages 1-21, January.
    7. Chitalia, Gopal & Pipattanasomporn, Manisa & Garg, Vishal & Rahman, Saifur, 2020. "Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 278(C).
    8. Dai, Yeming & Zhao, Pei, 2020. "A hybrid load forecasting model based on support vector machine with intelligent methods for feature selection and parameter optimization," Applied Energy, Elsevier, vol. 279(C).
    9. Arora, Siddharth & Taylor, James W., 2018. "Rule-based autoregressive moving average models for forecasting load on special days: A case study for France," European Journal of Operational Research, Elsevier, vol. 266(1), pages 259-268.
    10. Wang, Lan & Lee, Eric W.M. & Yuen, Richard K.K., 2018. "Novel dynamic forecasting model for building cooling loads combining an artificial neural network and an ensemble approach," Applied Energy, Elsevier, vol. 228(C), pages 1740-1753.
    11. Zhong, Hai & Wang, Jiajun & Jia, Hongjie & Mu, Yunfei & Lv, Shilei, 2019. "Vector field-based support vector regression for building energy consumption prediction," Applied Energy, Elsevier, vol. 242(C), pages 403-414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Daogang & Liu, Yu & Wang, Danhao & Zhao, Huirong & Qu, Bogang, 2024. "Multi-energy load forecasting for integrated energy system based on sequence decomposition fusion and factors correlation analysis," Energy, Elsevier, vol. 308(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Song & Dong, Xia & Tao, Li & Wang, Junjie & He, Yi & Yue, Dong, 2024. "Multi-type load forecasting model based on random forest and density clustering with the influence of noise and load patterns," Energy, Elsevier, vol. 307(C).
    2. Dai, Yeming & Yang, Xinyu & Leng, Mingming, 2022. "Forecasting power load: A hybrid forecasting method with intelligent data processing and optimized artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    3. Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    4. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    5. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    6. Grzegorz Dudek, 2022. "A Comprehensive Study of Random Forest for Short-Term Load Forecasting," Energies, MDPI, vol. 15(20), pages 1-19, October.
    7. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    8. Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
    9. Rosato, Antonello & Panella, Massimo & Andreotti, Amedeo & Mohammed, Osama A. & Araneo, Rodolfo, 2021. "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, Elsevier, vol. 291(C).
    10. Ahmad, Tanveer & Zhang, Dongdong & Huang, Chao, 2021. "Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications," Energy, Elsevier, vol. 231(C).
    11. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ngo, Tuan Duc & Nguyen-Xuan, H., 2020. "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings," Energy, Elsevier, vol. 190(C).
    12. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho & Acharya, Rajendra & Dinh, Toan, 2025. "Electricity demand uncertainty modeling with Temporal Convolution Neural Network models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    13. Sun, Jian & Liu, Gang & Sun, Boyang & Xiao, Gang, 2021. "Light-stacking strengthened fusion based building energy consumption prediction framework via variable weight feature selection," Applied Energy, Elsevier, vol. 303(C).
    14. Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
    15. Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).
    16. Mobarak Abumohsen & Amani Yousef Owda & Majdi Owda, 2023. "Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms," Energies, MDPI, vol. 16(5), pages 1-31, February.
    17. Chen, Zhiwen & Deng, Qiao & Ren, Hao & Zhao, Zhengrun & Peng, Tao & Yang, Chunhua & Gui, Weihua, 2022. "A new energy consumption prediction method for chillers based on GraphSAGE by combining empirical knowledge and operating data," Applied Energy, Elsevier, vol. 310(C).
    18. Jeong, Dongyeon & Park, Chiwoo & Ko, Young Myoung, 2021. "Short-term electric load forecasting for buildings using logistic mixture vector autoregressive model with curve registration," Applied Energy, Elsevier, vol. 282(PB).
    19. William Mounter & Chris Ogwumike & Huda Dawood & Nashwan Dawood, 2021. "Machine Learning and Data Segmentation for Building Energy Use Prediction—A Comparative Study," Energies, MDPI, vol. 14(18), pages 1-42, September.
    20. Wang, Chao-fan & Liu, Kui-xing & Peng, Jieyang & Li, Xiang & Liu, Xiu-feng & Zhang, Jia-wan & Niu, Zhi-bin, 2025. "High-precision energy consumption forecasting for large office building using a signal decomposition-based deep learning approach," Energy, Elsevier, vol. 314(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15270-:d:1267254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.