IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14588-d1255582.html
   My bibliography  Save this article

Investigation of Pyrolysis/Gasification Process Conditions and Syngas Production with Metal Catalysts Using Waste Bamboo Biomass: Effects and Insights

Author

Listed:
  • Yue Guo

    (Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan)

  • Qingyue Wang

    (Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan)

Abstract

The primary objective of this study was to examine the catalytic behaviors exhibited by diverse metal catalysts such as CaO, NiO, and K 2 CO 3 for pyrolysis and gasification application with waste biomass. The investigation involved fine tuning the conditions of pyrolysis/gasification by optimizing the pyrolysis atmosphere, catalyst addition methods, and catalyst quantities. The behaviors were investigated using thermal analysis (TG-DTA), and the production gaseous contents were analyzed via GC-FID. The results showed that Ar gas proved to be well suited for the pyrolysis reaction. The incorporation of catalysts through mixing and impregnation techniques ensured the homogeneous dispersion of catalyst particles within the sample, offering a clear advantage over the two-stage approach. Among the various catalysts explored, K 2 CO 3 demonstrated the most favorable catalytic impact, resulting in an enhancement of char yield from 20.2 to 26.8%, while the tar yield was reduced from 44.3 to 38.6%. Furthermore, the presence of K during gasification reactions was found to foster accelerated reaction rates and an increase in syngas production yield.

Suggested Citation

  • Yue Guo & Qingyue Wang, 2023. "Investigation of Pyrolysis/Gasification Process Conditions and Syngas Production with Metal Catalysts Using Waste Bamboo Biomass: Effects and Insights," Sustainability, MDPI, vol. 15(19), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14588-:d:1255582
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nzihou, Ange & Stanmore, Brian & Sharrock, Patrick, 2013. "A review of catalysts for the gasification of biomass char, with some reference to coal," Energy, Elsevier, vol. 58(C), pages 305-317.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dupont, Capucine & Jacob, Sylvain & Marrakchy, Khalil Ould & Hognon, Céline & Grateau, Maguelone & Labalette, Françoise & Da Silva Perez, Denilson, 2016. "How inorganic elements of biomass influence char steam gasification kinetics," Energy, Elsevier, vol. 109(C), pages 430-435.
    2. Chen, Yuan & Lin, Weigang & Wu, Hao & Jensen, Peter Arendt & Song, Wenli & Du, Lin & Li, Songgeng, 2021. "Steam gasification of char derived from penicillin mycelial dreg and lignocellulosic biomass: Influence of P, K and Ca on char reactivity," Energy, Elsevier, vol. 228(C).
    3. Anna Trubetskaya, 2022. "Reactivity Effects of Inorganic Content in Biomass Gasification: A Review," Energies, MDPI, vol. 15(9), pages 1-36, April.
    4. Xie, Yingpu & Zeng, Kuo & Flamant, Gilles & Yang, Haiping & Liu, Nian & He, Xiao & Yang, Xinyi & Nzihou, Ange & Chen, Hanping, 2019. "Solar pyrolysis of cotton stalk in molten salt for bio-fuel production," Energy, Elsevier, vol. 179(C), pages 1124-1132.
    5. Dahou, T. & Defoort, F. & Khiari, B. & Labaki, M. & Dupont, C. & Jeguirim, M., 2021. "Role of inorganics on the biomass char gasification reactivity: A review involving reaction mechanisms and kinetics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    7. Elsaddik, Majd & Nzihou, Ange & Delmas, Michel & Delmas, Guo-Hua, 2023. "Steam gasification of cellulose pulp char: Insights on experimental and kinetic study with a focus on the role of Silicon," Energy, Elsevier, vol. 271(C).
    8. Zeng, Kuo & Li, Jun & Xie, Yingpu & Yang, Haiping & Yang, Xinyi & Zhong, Dian & Zhen, Wanxin & Flamant, Gilles & Chen, Hanping, 2020. "Molten salt pyrolysis of biomass: The mechanism of volatile reforming and pyrolysis," Energy, Elsevier, vol. 213(C).
    9. Prestipino, M. & Galvagno, A. & Karlström, O. & Brink, A., 2018. "Energy conversion of agricultural biomass char: Steam gasification kinetics," Energy, Elsevier, vol. 161(C), pages 1055-1063.
    10. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Bai, Yonghui & Wang, Yulong & Zhu, Shenghua & Li, Fan & Xie, Kechang, 2014. "Structural features and gasification reactivity of coal chars formed in Ar and CO2 atmospheres at elevated pressures," Energy, Elsevier, vol. 74(C), pages 464-470.
    12. Furusjö, Erik & Ma, Chunyan & Ji, Xiaoyan & Carvalho, Lara & Lundgren, Joakim & Wetterlund, Elisabeth, 2018. "Alkali enhanced biomass gasification with in situ S capture and novel syngas cleaning. Part 1: Gasifier performance," Energy, Elsevier, vol. 157(C), pages 96-105.
    13. Widjaya, Elita R. & Chen, Guangnan & Bowtell, Les & Hills, Catherine, 2018. "Gasification of non-woody biomass: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 184-193.
    14. Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Wang, Zhongde & Zhang, Zhonglin & Abudula, Abuliti, 2015. "Oil production from mild pyrolysis of low-rank coal in molten salts media," Applied Energy, Elsevier, vol. 154(C), pages 944-950.
    15. Berdugo Vilches, Teresa & Lind, Fredrik & Rydén, Magnus & Thunman, Henrik, 2017. "Experience of more than 1000h of operation with oxygen carriers and solid biomass at large scale," Applied Energy, Elsevier, vol. 190(C), pages 1174-1183.
    16. Hu, Qiang & Yang, Haiping & Wu, Zhiqiang & Lim, C. Jim & Bi, Xiaotao T. & Chen, Hanping, 2019. "Experimental and modeling study of potassium catalyzed gasification of woody char pellet with CO2," Energy, Elsevier, vol. 171(C), pages 678-688.
    17. Lajili, M. & Guizani, C. & Escudero Sanz, F.J. & Jeguirim, M., 2018. "Fast pyrolysis and steam gasification of pellets prepared from olive oil mill residues," Energy, Elsevier, vol. 150(C), pages 61-68.
    18. Yuan, Peng & Shen, Boxiong & Duan, Dongping & Adwek, George & Mei, Xue & Lu, Fengju, 2017. "Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process," Energy, Elsevier, vol. 141(C), pages 472-482.
    19. Link, Siim & Tran, Khanh-Quang & Bach, Quang-Vu & Yrjas, Patrik & Lindberg, Daniel & Arvelakis, Stelios & Rosin, Argo, 2018. "Catalytic effect of oil shale ash on CO2 gasification of leached wheat straw and reed chars," Energy, Elsevier, vol. 152(C), pages 906-913.
    20. Eleonora Cordioli & Francesco Patuzzi & Marco Baratieri, 2019. "Thermal and Catalytic Cracking of Toluene Using Char from Commercial Gasification Systems," Energies, MDPI, vol. 12(19), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14588-:d:1255582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.