IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14090-d1245908.html
   My bibliography  Save this article

Improving Climate Resilience of Critical Assets: The ICARIA Project

Author

Listed:
  • Beniamino Russo

    (Flumen Research Institute, Universitat Politècnica de Catalunya—BarcelonaTech (UPC), Campus Nord, 08034 Barcelona, Spain
    Climate Change & Resilience Unit, AQUATEC (AGBAR Group), 08038 Barcelona, Spain)

  • Àlex de la Cruz Coronas

    (Climate Change & Resilience Unit, AQUATEC (AGBAR Group), 08038 Barcelona, Spain)

  • Mattia Leone

    (Department of Architecture, PLINIVS-LUPT Study Centre, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy)

  • Barry Evans

    (Centre for Water Systems, University of Exeter, Exeter EX4 4QJ, UK)

  • Rita Salgado Brito

    (Laboratorio Nacional de Engenharia Civil, 1700 Lisboa, Portugal)

  • Denis Havlik

    (Austrian Institute of Technology GMBH, 1210 Wien, Austria)

  • Marianne Bügelmayer-Blaschek

    (Austrian Institute of Technology GMBH, 1210 Wien, Austria)

  • David Pacheco

    (CETAQUA Water Technology Center, 08940 Cornellà de Llobregat, Spain)

  • Athanasios Sfetsos

    (National Center for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece)

Abstract

The number of climate-related disasters has progressively increased in the last two decades and this trend will drastically exacerbate in the medium- and long-term horizons according to climate change projections. In this framework, through a multi-disciplinary team and a strong background acquired in recent projects, ICARIA aims to promote the use of asset-level modeling to achieve a better understanding of climate related tangible direct and indirect impacts on critical assets due to complex, cascading, and compound disasters. Furthermore, it takes into account the related risk reduction provided by suitable, sustainable, and cost-effective adaptation solutions. ICARIA focuses on both (i) critical assets and services that were not designed for potential climate change-related impacts that can increase the unplanned outages and failures, and (ii) on housing, natural areas, and population. Cutting edge methods regarding climate scenario building, asset-level-coupled models, and multi-risk assessment approaches will be implemented and replicated in three EU regions to understand how future climate scenarios might affect critical assets and to provide decision-making support tools to private and public risk owners to assess the costs and benefits of various adaptation solutions.

Suggested Citation

  • Beniamino Russo & Àlex de la Cruz Coronas & Mattia Leone & Barry Evans & Rita Salgado Brito & Denis Havlik & Marianne Bügelmayer-Blaschek & David Pacheco & Athanasios Sfetsos, 2023. "Improving Climate Resilience of Critical Assets: The ICARIA Project," Sustainability, MDPI, vol. 15(19), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14090-:d:1245908
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14090/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14090/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agnese Turchi & Rosaria Lumino & Dora Gambardella & Mattia Federico Leone, 2023. "Coping Capacity, Adaptive Capacity, and Transformative Capacity Preliminary Characterization in a “Multi-Hazard” Resilience Perspective: The Soccavo District Case Study (City of Naples, Italy)," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    2. Barry Evans & Albert S. Chen & Slobodan Djordjević & James Webber & Andoni González Gómez & John Stevens, 2020. "Investigating the Effects of Pluvial Flooding and Climate Change on Traffic Flows in Barcelona and Bristol," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    3. Daniel Sánchez-Muñoz & José L. Domínguez-García & Eduardo Martínez-Gomariz & Beniamino Russo & John Stevens & Miguel Pardo, 2020. "Electrical Grid Risk Assessment Against Flooding in Barcelona and Bristol Cities," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    4. Beniamino Russo & Marc Velasco & Luca Locatelli & David Sunyer & Daniel Yubero & Robert Monjo & Eduardo Martínez-Gomariz & Edwar Forero-Ortiz & Daniel Sánchez-Muñoz & Barry Evans & Andoni Gonzalez Góm, 2020. "Assessment of Urban Flood Resilience in Barcelona for Current and Future Scenarios. The RESCCUE Project," Sustainability, MDPI, vol. 12(14), pages 1-25, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Velasco & Beniamino Russo & Robert Monjo & César Paradinas & Slobodan Djordjević & Barry Evans & Eduardo Martínez-Gomariz & Maria Guerrero-Hidalga & Maria Adriana Cardoso & Rita Salgado Brito & D, 2020. "Increased Urban Resilience to Climate Change—Key Outputs from the RESCCUE Project," Sustainability, MDPI, vol. 12(23), pages 1-25, November.
    2. Maria Adriana Cardoso & Maria João Telhado & Maria do Céu Almeida & Rita Salgado Brito & Cristina Pereira & João Barreiro & Marco Morais, 2020. "Following a Step by Step Development of a Resilience Action Plan," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    3. María Guerrero-Hidalga & Eduardo Martínez-Gomariz & Barry Evans & James Webber & Montserrat Termes-Rifé & Beniamino Russo & Luca Locatelli, 2020. "Methodology to Prioritize Climate Adaptation Measures in Urban Areas. Barcelona and Bristol Case Studies," Sustainability, MDPI, vol. 12(12), pages 1-25, June.
    4. Beniamino Russo & Marc Velasco & Luca Locatelli & David Sunyer & Daniel Yubero & Robert Monjo & Eduardo Martínez-Gomariz & Edwar Forero-Ortiz & Daniel Sánchez-Muñoz & Barry Evans & Andoni Gonzalez Góm, 2020. "Assessment of Urban Flood Resilience in Barcelona for Current and Future Scenarios. The RESCCUE Project," Sustainability, MDPI, vol. 12(14), pages 1-25, July.
    5. Beniamino Russo & Manuel Gómez Valentín & Jackson Tellez-Álvarez, 2021. "The Relevance of Grated Inlets within Surface Drainage Systems in the Field of Urban Flood Resilience. A Review of Several Experimental and Numerical Simulation Approaches," Sustainability, MDPI, vol. 13(13), pages 1-13, June.
    6. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Min Zhang & Yufu Liu & Yixiong Xiao & Wenqi Sun & Chen Zhang & Yong Wang & Yuqi Bai, 2021. "Vulnerability and Resilience of Urban Traffic to Precipitation in China," IJERPH, MDPI, vol. 18(23), pages 1-13, November.
    8. Muhammad Asyraf Azni & Rasyikah Md Khalid & Umi Azmah Hasran & Siti Kartom Kamarudin, 2023. "Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    9. Nan Ma & Ziwen Xu & Yijun Wang & Guowei Liu & Lisheng Xin & Dafu Liu & Ziyu Liu & Jiaju Shi & Chen Chen, 2024. "Strategies for Improving the Resiliency of Distribution Networks in Electric Power Systems during Typhoon and Water-Logging Disasters," Energies, MDPI, vol. 17(5), pages 1-16, March.
    10. John Stevens & Rob Henderson & James Webber & Barry Evans & Albert Chen & Slobodan Djordjević & Daniel Sánchez-Muñoz & José Domínguez-García, 2020. "Interlinking Bristol Based Models to Build Resilience to Climate Change," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    11. Gururaghav Raman & Gurupraanesh Raman & Jimmy Chih-Hsien Peng, 2022. "Resilience of urban public electric vehicle charging infrastructure to flooding," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14090-:d:1245908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.