IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1527-d322123.html
   My bibliography  Save this article

Electrical Grid Risk Assessment Against Flooding in Barcelona and Bristol Cities

Author

Listed:
  • Daniel Sánchez-Muñoz

    (IREC, Power Systems department, Jardins de les Dones de Negre, 1, 2ª pl., 08930 Sant Adrià de Besòs, Barcelona, Spain)

  • José L. Domínguez-García

    (IREC, Power Systems department, Jardins de les Dones de Negre, 1, 2ª pl., 08930 Sant Adrià de Besòs, Barcelona, Spain)

  • Eduardo Martínez-Gomariz

    (Cetaqua, Water Technology Centre, Carretera d’Esplugues, 75, 08940 Cornellà de Llobregat, Spain
    FLUMEN Research Institute, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain)

  • Beniamino Russo

    (AQUATEC (SUEZ Advanced Solutions), Paseo de la Zona Franca, 46-48, 08038 Barcelona, Spain
    Grupo de Ingeniería Hidráulica y Ambiental (GIHA), Escuela Politécnica de La Almunia (EUPLA), Universidad de Zaragoza, Calle Mayor 5, 50100 La Almunia de Doña Godina, Zaragoza, Spain)

  • John Stevens

    (Bristol City Council. 100 Temple Street, P.O. Box 3176, Bristol BS1 6AG, UK)

  • Miguel Pardo

    (E-distribución. Av. de Vilanova, 12, 08018 Barcelona, Spain)

Abstract

Climate change is increasing the frequency and intensity of extreme events and, consequently, flooding in urban and peri-urban areas. The electrical grid is exposed to an increase in fault probability because its infrastructure was designed considering historical frequencies of extreme events occurred in the past. In this respect, to ensure future energy plans and securing services is of great relevance to determine and evaluate the new zones that may be under risk and its relation to critical infrastructures for such extreme events. In this regard, the electrical distribution system is one of the key critical infrastructures since it feeds the others and with the future plans of zero-emissions (leading to the electrification of transport, buildings, renewable energies, etc.) will become even more important in the short term. In this paper, a novel methodology has been developed, able to analyze flood hazard maps quantifying the probability of failure risk of the electrical assets and their potential impacts using a probabilistic approach. Furthermore, a process to monetize the consequences of the yielded risk was established. The whole method developed was applied to the Barcelona and Bristol case study cities. In this way, two different examples of application have been undertaken by using slightly different inputs. Two main inputs were required: (1) the development of accurate GIS hazard flooding models; and (2) the location of the electrical assets (i.e., Distribution Centers (DCs)). To assess and monetize the flood risk to DCs, a variety of variables and tools were required such as water depths (i.e., flood maps), DCs’ areas of influence, fragility curves, and damage curves. The analysis was performed for different return periods under different scenarios, current (Baseline) and future (Business As Usual (BAU)) rainfall conditions. The number of DCs affected was quantified and classified into different categories of risk, where up to 363 were affected in Barcelona and 623 in Bristol. Their risk monetization resulted in maximums of 815,700 € in Barcelona and 643,500 € in Bristol. Finally, the percentage of risk increases when considering future rainfall conditions (i.e., BAU) when calculated, resulting in a 2.38% increase in Barcelona and 3.37% increase in Bristol, which in monetary terms would be an average of a 22% increase.

Suggested Citation

  • Daniel Sánchez-Muñoz & José L. Domínguez-García & Eduardo Martínez-Gomariz & Beniamino Russo & John Stevens & Miguel Pardo, 2020. "Electrical Grid Risk Assessment Against Flooding in Barcelona and Bristol Cities," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1527-:d:322123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1527/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1527/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Guerrero-Hidalga & Eduardo Martínez-Gomariz & Barry Evans & James Webber & Montserrat Termes-Rifé & Beniamino Russo & Luca Locatelli, 2020. "Methodology to Prioritize Climate Adaptation Measures in Urban Areas. Barcelona and Bristol Case Studies," Sustainability, MDPI, vol. 12(12), pages 1-25, June.
    2. John Stevens & Rob Henderson & James Webber & Barry Evans & Albert Chen & Slobodan Djordjević & Daniel Sánchez-Muñoz & José Domínguez-García, 2020. "Interlinking Bristol Based Models to Build Resilience to Climate Change," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    3. Muhammad Asyraf Azni & Rasyikah Md Khalid & Umi Azmah Hasran & Siti Kartom Kamarudin, 2023. "Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    4. Beniamino Russo & Marc Velasco & Luca Locatelli & David Sunyer & Daniel Yubero & Robert Monjo & Eduardo Martínez-Gomariz & Edwar Forero-Ortiz & Daniel Sánchez-Muñoz & Barry Evans & Andoni Gonzalez Góm, 2020. "Assessment of Urban Flood Resilience in Barcelona for Current and Future Scenarios. The RESCCUE Project," Sustainability, MDPI, vol. 12(14), pages 1-25, July.
    5. Beniamino Russo & Àlex de la Cruz Coronas & Mattia Leone & Barry Evans & Rita Salgado Brito & Denis Havlik & Marianne Bügelmayer-Blaschek & David Pacheco & Athanasios Sfetsos, 2023. "Improving Climate Resilience of Critical Assets: The ICARIA Project," Sustainability, MDPI, vol. 15(19), pages 1-14, September.
    6. Nan Ma & Ziwen Xu & Yijun Wang & Guowei Liu & Lisheng Xin & Dafu Liu & Ziyu Liu & Jiaju Shi & Chen Chen, 2024. "Strategies for Improving the Resiliency of Distribution Networks in Electric Power Systems during Typhoon and Water-Logging Disasters," Energies, MDPI, vol. 17(5), pages 1-16, March.
    7. Marc Velasco & Beniamino Russo & Robert Monjo & César Paradinas & Slobodan Djordjević & Barry Evans & Eduardo Martínez-Gomariz & Maria Guerrero-Hidalga & Maria Adriana Cardoso & Rita Salgado Brito & D, 2020. "Increased Urban Resilience to Climate Change—Key Outputs from the RESCCUE Project," Sustainability, MDPI, vol. 12(23), pages 1-25, November.
    8. Maria Adriana Cardoso & Maria João Telhado & Maria do Céu Almeida & Rita Salgado Brito & Cristina Pereira & João Barreiro & Marco Morais, 2020. "Following a Step by Step Development of a Resilience Action Plan," Sustainability, MDPI, vol. 12(21), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1527-:d:322123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.