IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p12914-d1226083.html
   My bibliography  Save this article

A Comprehensive Review on Machine Learning Techniques for Forecasting Wind Flow Pattern

Author

Listed:
  • K. R. Sri Preethaa

    (Department of Computer Science and Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India
    Department of Robot and Smart System Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea)

  • Akila Muthuramalingam

    (Department of Computer Science and Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India)

  • Yuvaraj Natarajan

    (Department of Computer Science and Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India
    Department of Robot and Smart System Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea)

  • Gitanjali Wadhwa

    (Department of Computer Science and Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India)

  • Ahmed Abdi Yusuf Ali

    (Department of Electrical Engineering, University of Johannesburg, Johannesburg 2092, South Africa)

Abstract

The wind is a crucial factor in various domains such as weather forecasting, the wind power industry, agriculture, structural health monitoring, and so on. The variability and unpredictable nature of the wind is a challenge faced by most wind-energy-based sectors. Several atmospheric and geographical factors influence wind characteristics. Many wind forecasting methods and tools have been introduced since early times. Wind forecasting can be carried out short-, medium-, and long-term. The uncertainty factors of the wind challenge the accuracy of techniques. This article brings the general background of physical, statistical, and intelligent approaches and their methods used to predict wind characteristics and their challenges—this work’s objective is to improve effective data-driven models for forecasting wind-power production. The investigation and listing of the effectiveness of improved machine learning models to estimate univariate wind-energy time-based data is crucially the prominent focus of this work. The performance of various ML predicting models was examined using ensemble learning (ES) models, such as boosted trees and bagged trees, Support Vector Regression (SVR) with distinctive kernels etc. Numerous neural networks have recently been constructed for forecasting wind speed and power due to artificial intelligence (AI) advancement. Based on the model summary, further directions for research and application developments can be planned.

Suggested Citation

  • K. R. Sri Preethaa & Akila Muthuramalingam & Yuvaraj Natarajan & Gitanjali Wadhwa & Ahmed Abdi Yusuf Ali, 2023. "A Comprehensive Review on Machine Learning Techniques for Forecasting Wind Flow Pattern," Sustainability, MDPI, vol. 15(17), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12914-:d:1226083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/12914/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/12914/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Hui & Chen, Chao, 2019. "Multi-objective data-ensemble wind speed forecasting model with stacked sparse autoencoder and adaptive decomposition-based error correction," Applied Energy, Elsevier, vol. 254(C).
    2. Lv, Sheng-Xiang & Wang, Lin, 2023. "Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model," Energy, Elsevier, vol. 263(PE).
    3. Sun, Shaolong & Qiao, Han & Wei, Yunjie & Wang, Shouyang, 2017. "A new dynamic integrated approach for wind speed forecasting," Applied Energy, Elsevier, vol. 197(C), pages 151-162.
    4. Han, Shuang & Qiao, Yan-hui & Yan, Jie & Liu, Yong-qian & Li, Li & Wang, Zheng, 2019. "Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network," Applied Energy, Elsevier, vol. 239(C), pages 181-191.
    5. Chitsazan, Mohammad Amin & Sami Fadali, M. & Trzynadlowski, Andrzej M., 2019. "Wind speed and wind direction forecasting using echo state network with nonlinear functions," Renewable Energy, Elsevier, vol. 131(C), pages 879-889.
    6. Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
    7. Liu, Hui & Yang, Rui & Wang, Tiantian & Zhang, Lei, 2021. "A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections," Renewable Energy, Elsevier, vol. 165(P1), pages 573-594.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Michalowska, 2023. "Model of a Predictive Neural Network for Determining the Electric Fields of Training Flight Phases," Energies, MDPI, vol. 17(1), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    2. Yang, Rui & Liu, Hui & Nikitas, Nikolaos & Duan, Zhu & Li, Yanfei & Li, Ye, 2022. "Short-term wind speed forecasting using deep reinforcement learning with improved multiple error correction approach," Energy, Elsevier, vol. 239(PB).
    3. García, Irene & Huo, Stella & Prado, Raquel & Bravo, Lelys, 2020. "Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements," Renewable Energy, Elsevier, vol. 161(C), pages 55-64.
    4. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    5. Hu, Huanling & Wang, Lin & Lv, Sheng-Xiang, 2020. "Forecasting energy consumption and wind power generation using deep echo state network," Renewable Energy, Elsevier, vol. 154(C), pages 598-613.
    6. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
    7. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    8. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    9. Jiang, Ping & Yang, Hufang & Heng, Jiani, 2019. "A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting," Applied Energy, Elsevier, vol. 235(C), pages 786-801.
    10. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    11. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    12. Jafarzadeh Ghoushchi, Saeid & Manjili, Sobhan & Mardani, Abbas & Saraji, Mahyar Kamali, 2021. "An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind power plant," Energy, Elsevier, vol. 223(C).
    13. Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
    14. Ahmed, Adil & Khalid, Muhammad, 2018. "An intelligent framework for short-term multi-step wind speed forecasting based on Functional Networks," Applied Energy, Elsevier, vol. 225(C), pages 902-911.
    15. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Li, Zhuo, 2021. "Feature extraction of meteorological factors for wind power prediction based on variable weight combined method," Renewable Energy, Elsevier, vol. 179(C), pages 1925-1939.
    16. Liu, Zhenkun & Jiang, Ping & Zhang, Lifang & Niu, Xinsong, 2020. "A combined forecasting model for time series: Application to short-term wind speed forecasting," Applied Energy, Elsevier, vol. 259(C).
    17. Imran Shafi & Harris Khan & Muhammad Siddique Farooq & Isabel de la Torre Diez & Yini Miró & Juan Castanedo Galán & Imran Ashraf, 2023. "An Artificial Neural Network-Based Approach for Real-Time Hybrid Wind–Solar Resource Assessment and Power Estimation," Energies, MDPI, vol. 16(10), pages 1-18, May.
    18. Hu, Huanling & Wang, Lin & Zhang, Dabin & Ling, Liwen, 2023. "Rolling decomposition method in fusion with echo state network for wind speed forecasting," Renewable Energy, Elsevier, vol. 216(C).
    19. Li, Yanfei & Shi, Huipeng & Han, Fengze & Duan, Zhu & Liu, Hui, 2019. "Smart wind speed forecasting approach using various boosting algorithms, big multi-step forecasting strategy," Renewable Energy, Elsevier, vol. 135(C), pages 540-553.
    20. Ren, Weijie & Li, Baisong & Han, Min, 2020. "A novel Granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12914-:d:1226083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.