IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p12829-d1224436.html
   My bibliography  Save this article

Designing a Cycling Dashboard as a Way of Communicating Local Sustainability

Author

Listed:
  • Lorenz Beck

    (Institute for Geoinformatics, University of Münster, 48149 Münster, Germany
    These authors contributed equally to this work.)

  • Simge Özdal Oktay

    (Institute for Geoinformatics, University of Münster, 48149 Münster, Germany
    These authors contributed equally to this work.)

Abstract

This paper conceptualizes the use of interactive urban dashboards in collecting and visualizing sustainability indicators at local scales through a cycling dashboard prototype for Münster. Urban dashboards are integrated platforms that bring various data types and sources together and automatize the visualization of information in real time. They can function as information hubs that work with mobile applications, sensor-based data, and crowdsourced platforms. Visualization of information can present both map-based data, text, and graphical information. In this study, a cycling dashboard is introduced that is developed as a prototype. The dashboard is based on the sustainability indicators related to cycling infrastructure defined by the German Sustainable Building Council (DGNB). It retrieves crowdsourced open data from Open Street Map (OSM) and automatically updates the information when new data are entered into the platform. This enables detailed exploration of the geo-referenced information up to street level and comparisons between different districts. In order to achieve a comprehensive framework, four main steps were included into the design and development process “determining a content by integrating future users, creating and evaluating a data inventory, designing the architecture of the dashboard, and implementing the prototype ” . As a result, this study holistically draws a comprehensive framework for the urban cycling dashboard around three main modules focusing on the sustainability of cycling infrastructure “infrastructure guide, cyclists’ voice, and idea center” . Additionally, the first prototype of an open local cycling dashboard has been implemented. The prototype enables the automation of collection, analysis, visualisation, and deep exploration of sustainability-related data at local scales. The results of this study contribute to the status quo by supporting the design and development process of local urban dashboards through a participatory approach.

Suggested Citation

  • Lorenz Beck & Simge Özdal Oktay, 2023. "Designing a Cycling Dashboard as a Way of Communicating Local Sustainability," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12829-:d:1224436
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/12829/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/12829/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gareth W. Young & Rob Kitchin & Jeneen Naji, 2021. "Building City Dashboards for Different Types of Users," Journal of Urban Technology, Taylor & Francis Journals, vol. 28(1-2), pages 289-309, April.
    2. Alvaro Rodriguez-Valencia & Jose Agustin Vallejo-Borda & German A. Barrero & Hernan Alberto Ortiz-Ramirez, 2022. "Towards an enriched framework of service evaluation for pedestrian and bicyclist infrastructure: acknowledging the power of users’ perceptions," Transportation, Springer, vol. 49(3), pages 791-814, June.
    3. Jonas Schmid-Querg & Andreas Keler & Georgios Grigoropoulos, 2021. "The Munich Bikeability Index: A Practical Approach for Measuring Urban Bikeability," Sustainability, MDPI, vol. 13(1), pages 1-14, January.
    4. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    5. Christian Werner & Martin Loidl, 2021. "Bicycle Mobility Data: Current Use and Future Potential. An International Survey of Domain Professionals," Data, MDPI, vol. 6(11), pages 1-11, November.
    6. Changfeng Jing & Mingyi Du & Songnian Li & Siyuan Liu, 2019. "Geospatial Dashboards for Monitoring Smart City Performance," Sustainability, MDPI, vol. 11(20), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacek Oskarbski & Krystian Birr & Karol Żarski, 2021. "Bicycle Traffic Model for Sustainable Urban Mobility Planning," Energies, MDPI, vol. 14(18), pages 1-36, September.
    2. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    3. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    4. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    5. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    6. Nermin Kişi, 2019. "A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    7. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    8. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    9. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    10. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.
    11. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    12. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    13. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    14. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    15. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    16. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    17. Kadir Kaan GÖNCÜ & Onur ÇETIN, 2022. "Evaluation Of Location Selection Criteria For Coordination Management Centers And Logistic Support Units In Disaster Areas With Ahp Method," Prizren Social Science Journal, SHIKS, vol. 6(2), pages 15-23, August.
    18. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    19. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.
    20. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12829-:d:1224436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.