IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10041-d1178769.html
   My bibliography  Save this article

Integrating Prospective LCA in the Development of Automotive Components

Author

Listed:
  • Julian Grenz

    (BENTELER Business Services GmbH, Residenzstraße 1, 33104 Paderborn, Germany)

  • Moritz Ostermann

    (Chair of Automotive Lightweight Design (LiA), Institute for Lightweight Design with Hybrid Systems (ILH), Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany)

  • Karoline Käsewieter

    (BENTELER Automobiltechnik GmbH, An der Talle 27-31, 33102 Paderborn, Germany)

  • Felipe Cerdas

    (Chair of Sustainable Manufacturing & Life Cycle Engineering, Institute of Machine Tools and Production Technology (IWF), Technische Universität Braunschweig, Langer Kamp 19b, 38106 Braunschweig, Germany)

  • Thorsten Marten

    (Chair of Automotive Lightweight Design (LiA), Institute for Lightweight Design with Hybrid Systems (ILH), Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany)

  • Christoph Herrmann

    (Chair of Sustainable Manufacturing & Life Cycle Engineering, Institute of Machine Tools and Production Technology (IWF), Technische Universität Braunschweig, Langer Kamp 19b, 38106 Braunschweig, Germany)

  • Thomas Tröster

    (Chair of Automotive Lightweight Design (LiA), Institute for Lightweight Design with Hybrid Systems (ILH), Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany)

Abstract

The development of automotive components with reduced greenhouse gas (GHG) emissions is needed to reduce overall vehicle emissions. Life Cycle Engineering (LCE) based on Life Cycle Assessment (LCA) supports this by providing holistic information and improvement potentials regarding eco-efficient products. Key factors influencing LCAs of automotive components, such as material production, will change in the future. First approaches for integrating future scenarios for these key factors into LCE already exist, but they only consider a limited number of parameters and scenarios. This work aims to develop a method that can be practically applied in the industry for integrating prospective LCAs (pLCA) into the LCE of automotive components, considering relevant parameters and consistent scenarios. Therefore, pLCA methods are further developed to investigate the influence of future scenarios on the GHG emissions of automotive components. The practical application is demonstrated for a vehicle component with different design options. This paper shows that different development paths of the foreground and background system can shift the ecological optimum of design alternatives. Therefore, future pathways of relevant parameters must be considered comprehensively to reduce GHG emissions of future vehicles. This work contributes to the methodological and practical integration of pLCA into automotive development processes and provides quantitative results.

Suggested Citation

  • Julian Grenz & Moritz Ostermann & Karoline Käsewieter & Felipe Cerdas & Thorsten Marten & Christoph Herrmann & Thomas Tröster, 2023. "Integrating Prospective LCA in the Development of Automotive Components," Sustainability, MDPI, vol. 15(13), pages 1-26, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10041-:d:1178769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10041/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10041/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johannes Lehmann & Matthias Rillig, 2014. "Distinguishing variability from uncertainty," Nature Climate Change, Nature, vol. 4(3), pages 153-153, March.
    2. Francesco Del Pero & Massimo Delogu & Martin Kerschbaum, 2020. "Design of a Lightweight Rear Crash Management System in a Sustainable Perspective," Sustainability, MDPI, vol. 12(13), pages 1-20, June.
    3. Michael Samsu Koroma & Nils Brown & Giuseppe Cardellini & Maarten Messagie, 2020. "Prospective Environmental Impacts of Passenger Cars under Different Energy and Steel Production Scenarios," Energies, MDPI, vol. 13(23), pages 1-17, November.
    4. Cox, Brian & Bauer, Christian & Mendoza Beltran, Angelica & van Vuuren, Detlef P. & Mutel, Christopher L., 2020. "Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios," Applied Energy, Elsevier, vol. 269(C).
    5. Tom Ritchey, 2011. "General Morphological Analysis (GMA)," Risk, Governance and Society, in: Wicked Problems – Social Messes, chapter 0, pages 7-18, Springer.
    6. Rickard Arvidsson & Anne‐Marie Tillman & Björn A. Sandén & Matty Janssen & Anders Nordelöf & Duncan Kushnir & Sverker Molander, 2018. "Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1286-1294, December.
    7. Nils Thonemann & Anna Schulte & Daniel Maga, 2020. "How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    8. Lars Reimer & Alexander Kaluza & Felipe Cerdas & Jens Meschke & Thomas Vietor & Christoph Herrmann, 2020. "Design of Eco-Efficient Body Parts for Electric Vehicles Considering Life Cycle Environmental Information," Sustainability, MDPI, vol. 12(14), pages 1-28, July.
    9. Matthias Buyle & Amaryllis Audenaert & Pieter Billen & Katrien Boonen & Steven Van Passel, 2019. "The Future of Ex-Ante LCA? Lessons Learned and Practical Recommendations," Sustainability, MDPI, vol. 11(19), pages 1-24, October.
    10. Moritz Ostermann & Julian Grenz & Marcel Triebus & Felipe Cerdas & Thorsten Marten & Thomas Tröster & Christoph Herrmann, 2023. "Integrating Prospective Scenarios in Life Cycle Engineering: Case Study of Lightweight Structures," Energies, MDPI, vol. 16(8), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Rüdele & Matthias Wolf, 2023. "Identification and Reduction of Product Carbon Footprints: Case Studies from the Austrian Automotive Supplier Industry," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    2. Joseph Poligkeit & Thomas Fugger & Christoph Herrmann, 2023. "Decarbonization in the Automotive Sector: A Holistic Status Quo Analysis of Original Equipment Manufacturer Strategies and Carbon Management Activities," Sustainability, MDPI, vol. 15(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moritz Ostermann & Julian Grenz & Marcel Triebus & Felipe Cerdas & Thorsten Marten & Thomas Tröster & Christoph Herrmann, 2023. "Integrating Prospective Scenarios in Life Cycle Engineering: Case Study of Lightweight Structures," Energies, MDPI, vol. 16(8), pages 1-24, April.
    2. Sacchi, R. & Terlouw, T. & Siala, K. & Dirnaichner, A. & Bauer, C. & Cox, B. & Mutel, C. & Daioglou, V. & Luderer, G., 2022. "PRospective EnvironMental Impact asSEment (premise): A streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Anna Furberg & Rickard Arvidsson & Sverker Molander, 2022. "A practice‐based framework for defining functional units in comparative life cycle assessments of materials," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 718-730, June.
    4. Nils Thonemann & Anna Schulte & Daniel Maga, 2020. "How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    5. Karla G. Morrissey & Leah English & Greg Thoma & Jennie Popp, 2022. "Prospective Life Cycle Assessment and Cost Analysis of Novel Electrochemical Struvite Recovery in a U.S. Wastewater Treatment Plant," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    6. Michael Samsu Koroma & Nils Brown & Giuseppe Cardellini & Maarten Messagie, 2020. "Prospective Environmental Impacts of Passenger Cars under Different Energy and Steel Production Scenarios," Energies, MDPI, vol. 13(23), pages 1-17, November.
    7. Denise Ott & Shashank Goyal & Rosmarie Reuss & Herwig O. Gutzeit & Jens Liebscher & Jens Dautz & Margo Degieter & Hans Steur & Emanuele Zannini, 2023. "LCA as decision support tool in the food and feed sector: evidence from R&D case studies," Environment Systems and Decisions, Springer, vol. 43(1), pages 129-141, March.
    8. Paul Baustert & Elorri Igos & Thomas Schaubroeck & Laurent Chion & Angelica Mendoza Beltran & Elke Stehfest & Detlef van Vuuren & Hester Biemans & Enrico Benetto, 2022. "Integration of future water scarcity and electricity supply into prospective LCA: Application to the assessment of water desalination for the steel industry," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1182-1194, August.
    9. van den Oever, A.E.M. & Costa, D. & Messagie, M., 2023. "Prospective life cycle assessment of alternatively fueled heavy-duty trucks," Applied Energy, Elsevier, vol. 336(C).
    10. Kai Rüdele & Matthias Wolf, 2023. "Identification and Reduction of Product Carbon Footprints: Case Studies from the Austrian Automotive Supplier Industry," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    11. Maes, Ben & Sacchi, Romain & Steubing, Bernhard & Pizzol, Massimo & Audenaert, Amaryllis & Craeye, Bart & Buyle, Matthias, 2023. "Prospective consequential life cycle assessment: Identifying the future marginal suppliers using integrated assessment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    13. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    14. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    15. Khalifa Mohammed Al-Sobai & Shaligram Pokharel & Galal M. Abdella, 2020. "Perspectives on the Capabilities for the Selection of Strategic Projects," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    16. Andri Ottesen & Sumayya Banna & Basil Alzougool, 2022. "Attitudes of Drivers towards Electric Vehicles in Kuwait," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    17. Adeline Gu'eret & Wolf-Peter Schill & Carlos Gaete-Morales, 2024. "Not flexible enough? Impacts of electric carsharing on a power sector with variable renewables," Papers 2402.19380, arXiv.org.
    18. Johannes Morfeldt & Daniel J. A. Johansson, 2022. "Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Luca Ciacci & Giorgio Zattini & Cristian Tosi & Beatrice Berti & Fabrizio Passarini & Loris Giorgini, 2022. "Carbon Fibers Waste Recovery via Pyro-Gasification: Semi-Industrial Pilot Plant Testing and LCA," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    20. Carlos Pablo Sigüenza & Bernhard Steubing & Arnold Tukker & Glenn A. Aguilar‐Hernández, 2021. "The environmental and material implications of circular transitions: A diffusion and product‐life‐cycle‐based modeling framework," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 563-579, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10041-:d:1178769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.