IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3371-d1121153.html
   My bibliography  Save this article

Integrating Prospective Scenarios in Life Cycle Engineering: Case Study of Lightweight Structures

Author

Listed:
  • Moritz Ostermann

    (Chair of Automotive Lightweight Design (LiA), Institute for Lightweight Design with Hybrid Systems (ILH), Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany)

  • Julian Grenz

    (BENTELER Business Services GmbH, Residenzstraße 1, 33104 Paderborn, Germany)

  • Marcel Triebus

    (Chair of Automotive Lightweight Design (LiA), Institute for Lightweight Design with Hybrid Systems (ILH), Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany)

  • Felipe Cerdas

    (Chair of Sustainable Manufacturing & Life Cycle Engineering, Institute of Machine Tools and Production Technology (IWF), Technische Universität Braunschweig, Langer Kamp 19b, 38106 Braunschweig, Germany)

  • Thorsten Marten

    (Chair of Automotive Lightweight Design (LiA), Institute for Lightweight Design with Hybrid Systems (ILH), Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany)

  • Thomas Tröster

    (Chair of Automotive Lightweight Design (LiA), Institute for Lightweight Design with Hybrid Systems (ILH), Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany)

  • Christoph Herrmann

    (Chair of Sustainable Manufacturing & Life Cycle Engineering, Institute of Machine Tools and Production Technology (IWF), Technische Universität Braunschweig, Langer Kamp 19b, 38106 Braunschweig, Germany)

Abstract

Lightweight design is a common approach to reduce energy demand in the use stage of vehicles. The production of lightweight materials is usually associated with an increase in energy demand, so the environmental impacts of lightweight structures need to be assessed holistically using a life cycle assessment. To estimate the life cycle environmental impacts of a product in its developmental stage, for example, by life cycle engineering, future changes in relevant influencing factors must be considered. Prospective life cycle assessment provides methods for integrating future scenarios into life cycle assessment studies. However, approaches for integrating prospective life cycle assessment into product development are limited. The objective of this work is to provide the methodological foundation for integrating future scenarios of relevant influencing factors in the development of lightweight structures. The applicability of the novel methodology is demonstrated by a case study of a structural component in a steel, aluminium, and hybrid design. The results show that appropriate decarbonisation measures can reduce the life cycle greenhouse gas emissions by up to 95 percent until 2050. We also found that shifts in the environmentally optimal design are possible in future scenarios. Therefore, the methodology and data provided contribute to improved decision-making in product development.

Suggested Citation

  • Moritz Ostermann & Julian Grenz & Marcel Triebus & Felipe Cerdas & Thorsten Marten & Thomas Tröster & Christoph Herrmann, 2023. "Integrating Prospective Scenarios in Life Cycle Engineering: Case Study of Lightweight Structures," Energies, MDPI, vol. 16(8), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3371-:d:1121153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3371/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3371/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesco Del Pero & Massimo Delogu & Martin Kerschbaum, 2020. "Design of a Lightweight Rear Crash Management System in a Sustainable Perspective," Sustainability, MDPI, vol. 12(13), pages 1-20, June.
    2. Nils Thonemann & Anna Schulte & Daniel Maga, 2020. "How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    3. Massimo Delogu & Francesco Del Pero & Marco Pierini, 2016. "Lightweight Design Solutions in the Automotive Field: Environmental Modelling Based on Fuel Reduction Value Applied to Diesel Turbocharged Vehicles," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    4. Mayyas, Ahmad T. & Qattawi, Ala & Mayyas, Abdel Raouf & Omar, Mohammed A., 2012. "Life cycle assessment-based selection for a sustainable lightweight body-in-white design," Energy, Elsevier, vol. 39(1), pages 412-425.
    5. Michael Samsu Koroma & Nils Brown & Giuseppe Cardellini & Maarten Messagie, 2020. "Prospective Environmental Impacts of Passenger Cars under Different Energy and Steel Production Scenarios," Energies, MDPI, vol. 13(23), pages 1-17, November.
    6. Sacchi, R. & Terlouw, T. & Siala, K. & Dirnaichner, A. & Bauer, C. & Cox, B. & Mutel, C. & Daioglou, V. & Luderer, G., 2022. "PRospective EnvironMental Impact asSEment (premise): A streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Shinichirou Morimoto & Yanfei Cheng & Norio Mizukoshi & Kiyotaka Tahara, 2020. "Methodological Study of Evaluating Future Lightweight Vehicle Scenarios and CO 2 Reduction Based on Life Cycle Assessment," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    8. Renó, Maria Luiza Grillo & Lora, Electo Eduardo Silva & Palacio, José Carlos Escobar & Venturini, Osvaldo José & Buchgeister, Jens & Almazan, Oscar, 2011. "A LCA (life cycle assessment) of the methanol production from sugarcane bagasse," Energy, Elsevier, vol. 36(6), pages 3716-3726.
    9. Angelica Mendoza Beltran & Brian Cox & Chris Mutel & Detlef P. van Vuuren & David Font Vivanco & Sebastiaan Deetman & Oreane Y. Edelenbosch & Jeroen Guinée & Arnold Tukker, 2020. "When the Background Matters: Using Scenarios from Integrated Assessment Models in Prospective Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 24(1), pages 64-79, February.
    10. Rickard Arvidsson & Anne‐Marie Tillman & Björn A. Sandén & Matty Janssen & Anders Nordelöf & Duncan Kushnir & Sverker Molander, 2018. "Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1286-1294, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Rüdele & Matthias Wolf, 2023. "Identification and Reduction of Product Carbon Footprints: Case Studies from the Austrian Automotive Supplier Industry," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    2. George Ekonomou & George Halkos, 2023. "Exploring the Impact of Economic Growth on the Environment: An Overview of Trends and Developments," Energies, MDPI, vol. 16(11), pages 1-19, June.
    3. Julian Grenz & Moritz Ostermann & Karoline Käsewieter & Felipe Cerdas & Thorsten Marten & Christoph Herrmann & Thomas Tröster, 2023. "Integrating Prospective LCA in the Development of Automotive Components," Sustainability, MDPI, vol. 15(13), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Oever, A.E.M. & Costa, D. & Messagie, M., 2023. "Prospective life cycle assessment of alternatively fueled heavy-duty trucks," Applied Energy, Elsevier, vol. 336(C).
    2. Julian Grenz & Moritz Ostermann & Karoline Käsewieter & Felipe Cerdas & Thorsten Marten & Christoph Herrmann & Thomas Tröster, 2023. "Integrating Prospective LCA in the Development of Automotive Components," Sustainability, MDPI, vol. 15(13), pages 1-26, June.
    3. Martin, Nick & Talens-Peiró, Laura & Villalba-Méndez, Gara & Nebot-Medina, Rafael & Madrid-López, Cristina, 2023. "An energy future beyond climate neutrality: Comprehensive evaluations of transition pathways," Applied Energy, Elsevier, vol. 331(C).
    4. Anna Furberg & Rickard Arvidsson & Sverker Molander, 2022. "A practice‐based framework for defining functional units in comparative life cycle assessments of materials," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 718-730, June.
    5. Paul Baustert & Elorri Igos & Thomas Schaubroeck & Laurent Chion & Angelica Mendoza Beltran & Elke Stehfest & Detlef van Vuuren & Hester Biemans & Enrico Benetto, 2022. "Integration of future water scarcity and electricity supply into prospective LCA: Application to the assessment of water desalination for the steel industry," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1182-1194, August.
    6. Maes, Ben & Sacchi, Romain & Steubing, Bernhard & Pizzol, Massimo & Audenaert, Amaryllis & Craeye, Bart & Buyle, Matthias, 2023. "Prospective consequential life cycle assessment: Identifying the future marginal suppliers using integrated assessment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Karla G. Morrissey & Leah English & Greg Thoma & Jennie Popp, 2022. "Prospective Life Cycle Assessment and Cost Analysis of Novel Electrochemical Struvite Recovery in a U.S. Wastewater Treatment Plant," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    8. Sacchi, R. & Terlouw, T. & Siala, K. & Dirnaichner, A. & Bauer, C. & Cox, B. & Mutel, C. & Daioglou, V. & Luderer, G., 2022. "PRospective EnvironMental Impact asSEment (premise): A streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Arjan Kirkels & Vince Evers & Gerrit Muller, 2021. "Systems Engineering for the Energy Transition: Potential Contributions and Limitations," Sustainability, MDPI, vol. 13(10), pages 1-13, May.
    10. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    11. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    12. Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
    13. Carlos Pablo Sigüenza & Bernhard Steubing & Arnold Tukker & Glenn A. Aguilar‐Hernández, 2021. "The environmental and material implications of circular transitions: A diffusion and product‐life‐cycle‐based modeling framework," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 563-579, June.
    14. Zacharopoulos, Leon & Thonemann, Nils & Dumeier, Marcel & Geldermann, Jutta, 2023. "Environmental optimization of the charge of battery electric vehicles," Applied Energy, Elsevier, vol. 329(C).
    15. Nils Thonemann & Anna Schulte & Daniel Maga, 2020. "How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    16. Somorin, Tosin Onabanjo & Di Lorenzo, Giuseppina & Kolios, Athanasios J., 2017. "Life-cycle assessment of self-generated electricity in Nigeria and Jatropha biodiesel as an alternative power fuel," Renewable Energy, Elsevier, vol. 113(C), pages 966-979.
    17. Viñoles-Cebolla, Rosario & Bastante-Ceca, María José & Capuz-Rizo, Salvador F., 2015. "An integrated method to calculate an automobile's emissions throughout its life cycle," Energy, Elsevier, vol. 83(C), pages 125-136.
    18. Panagiotis Stavropoulos & Alexios Papacharalampopoulos & Konstantinos Tzimanis & Demetris Petrides & George Chryssolouris, 2021. "On the Relationship between Circular and Innovation Approach to Economy," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    19. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    20. Magdalena Krysiak & Aldona Kluczek, 2021. "A Multifaceted Challenge to Enhance Multicriteria Decision Support for Energy Policy," Energies, MDPI, vol. 14(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3371-:d:1121153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.