IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9597-d1171406.html
   My bibliography  Save this article

Spatial Disequilibrium and Dynamic Evolution of Eco-Efficiency in China’s Tea Industry

Author

Listed:
  • Wenqiang Jiang

    (College of Rural Revitalization, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Baocai Su

    (College of Rural Revitalization, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Shuisheng Fan

    (College of Rural Revitalization, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

Abstract

Eco-efficiency is a significant target for evaluating the agricultural ecosystem and measuring sustainable agricultural development through quantitative analysis. It is also an essential part of constructing the ecological tea garden, which offers a directional function in realizing the green development of the tea industry. After measuring the eco-efficiency of China’s tea industry using the super-efficiency SBM model, this paper analyzes the spatial disequilibrium and dynamic evolution trend of the eco-efficiency in China’s tea industry through the method of Dagum Gini Coefficient and Kernel Density Estimation. The results show that the level of eco-efficiency in China’s tea industry was improved overall, and the spatial disequilibrium was significantly reduced. The differences within the tea region decreased as follows: tea regions in Southwest China, South China, south of the Yangtze River, and north of the Yangtze River; the overall difference in the eco-efficiency in the tea industry mainly comes from the contribution of the interregional difference in tea regions, and the second contribution comes from the intraregional difference in tea regions and the difference in super-variable density. The eco-efficiency of the tea industry has been improved both nationally and within the top four tea regions; the disequilibrium between areas and within the tea region has been largely alleviated, but there is still room to optimize the input–output structure and promote the eco-efficiency.

Suggested Citation

  • Wenqiang Jiang & Baocai Su & Shuisheng Fan, 2023. "Spatial Disequilibrium and Dynamic Evolution of Eco-Efficiency in China’s Tea Industry," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9597-:d:1171406
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9597/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9597/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tone, Kaoru & Sahoo, Biresh K., 2003. "Scale, indivisibilities and production function in data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 84(2), pages 165-192, May.
    2. Bing Xia & Suocheng Dong & Yu Li & Zehong Li & Dongqi Sun & Wenbiao Zhang & Wenlong Li, 2021. "Evolution Characters and Influencing Factors of Regional Eco-Efficiency in a Developing Country: Evidence from Mongolia," IJERPH, MDPI, vol. 18(20), pages 1-20, October.
    3. Gjalt Huppes & Masanobu Ishikawa, 2005. "A Framework for Quantified Eco‐efficiency Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 25-41, October.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Sinkin, Charlene & Wright, Charlotte J. & Burnett, Royce D., 2008. "Eco-efficiency and firm value," Journal of Accounting and Public Policy, Elsevier, vol. 27(2), pages 167-176.
    6. Minzhe Du & Jorge Antunes & Peter Wanke & Zhongfei Chen, 2022. "Ecological efficiency assessment under the construction of low-carbon city: a perspective of green technology innovation," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 65(9), pages 1727-1752, July.
    7. Marlena Gołaś & Piotr Sulewski & Adam Wąs & Anna Kłoczko-Gajewska & Kinga Pogodzińska, 2020. "On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    8. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    9. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chin‐wei Huang & Hsiao‐Yin Chen, 2023. "Using nonradial metafrontier data envelopment analysis to evaluate the metatechnology and metafactor ratios for the Taiwanese hotel industry," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 1904-1919, June.
    2. Yung-ho Chiu & Chin-wei Huang & Chung-te Ting, 2012. "A non-radial measure of different systems for Taiwanese tourist hotels’ efficiency assessment," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 45-63, March.
    3. Joanna Domagała, 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries," Energies, MDPI, vol. 14(22), pages 1-23, November.
    4. Luo Muchen & Rosita Hamdan & Rossazana Ab-Rahim, 2022. "Data-Driven Evaluation and Optimization of Agricultural Environmental Efficiency with Carbon Emission Constraints," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    5. Tone, Kaoru & Sahoo, Biresh K., 2005. "Evaluating cost efficiency and returns to scale in the Life Insurance Corporation of India using data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 39(4), pages 261-285, December.
    6. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, April.
    7. Alperovych, Yan & Hübner, Georges & Lobet, Fabrice, 2015. "How does governmental versus private venture capital backing affect a firm's efficiency? Evidence from Belgium," Journal of Business Venturing, Elsevier, vol. 30(4), pages 508-525.
    8. Ashrafi, Ali & Seow, Hsin-Vonn & Lee, Lai Soon & Lee, Chew Ging, 2013. "The efficiency of the hotel industry in Singapore," Tourism Management, Elsevier, vol. 37(C), pages 31-34.
    9. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    10. Yu-Chuan Chen & Yung-Ho Chiu & Tzu-Han Chang & Tai-Yu Lin, 2023. "Sustainable Development, Government Efficiency, and People’s Happiness," Journal of Happiness Studies, Springer, vol. 24(4), pages 1549-1578, April.
    11. Jin XU & Panagiotis ZERVOPOULOS & Zhenhua QIAN & Gang CHENG, 2012. "A Universal Solution For Units - Invariance In Data Envelopment Analysis," Theoretical and Practical Research in the Economic Fields, ASERS Publishing, vol. 3(2), pages 121-128.
    12. Junlong Li & Chuangneng Cai & Feng Zhang, 2020. "Assessment of Ecological Efficiency and Environmental Sustainability of the Minjiang-Source in China," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    13. Marques, Rui Cunha & Simões, Pedro, 2010. "Measuring the influence of congestion on efficiency in worldwide airports," Journal of Air Transport Management, Elsevier, vol. 16(6), pages 334-336.
    14. Ying Li & Yung-Ho Chiu & Tai-Yu Lin & Tzu-Han Chang, 2020. "Pre-Evaluating the Technical Efficiency Gains from Potential Mergers and Acquisitions in the IC Design Industry," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 525-559, April.
    15. Yung‐ho Chiu & Tai‐Yu Lin & Tzu‐Han Chang & Yi‐Nuo Lin & Shih‐Yung Chiu, 2021. "Prevaluating efficiency gains from potential mergers and acquisitions in the financial industry with the Resample Past–Present–Future data envelopment analysis approach," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(2), pages 369-384, March.
    16. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    17. Yin, Xu & Wang, Jing & Li, Yurui & Feng, Zhiming & Wang, Qianyi, 2021. "Are small towns really inefficient? A data envelopment analysis of sampled towns in Jiangsu province, China," Land Use Policy, Elsevier, vol. 109(C).
    18. Juan Aparicio & Magdalena Kapelko & Bernhard Mahlberg & Jose L. Sainz-Pardo, 2017. "Measuring input-specific productivity change based on the principle of least action," Journal of Productivity Analysis, Springer, vol. 47(1), pages 17-31, February.
    19. Muliaman Hadad & Maximilian Hall & Karligash Kenjegalieva & Wimboh Santoso & Richard Simper, 2011. "Banking efficiency and stock market performance: an analysis of listed Indonesian banks," Review of Quantitative Finance and Accounting, Springer, vol. 37(1), pages 1-20, July.
    20. Amir Homayoun Sarfaraz & Amir Karbassi Yazdi & Thomas Hanne & Peter Fernandes Wanke & Raheleh Sadat Hosseini, 2023. "Assessing repair and maintenance efficiency for water suppliers: a novel hybrid USBM-FIS framework," Operations Management Research, Springer, vol. 16(3), pages 1321-1342, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9597-:d:1171406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.