IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9453-d1169395.html
   My bibliography  Save this article

Encapsulant Materials and Their Adoption in Photovoltaic Modules: A Brief Review

Author

Listed:
  • Nadka Tz. Dintcheva

    (Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy)

  • Elisabetta Morici

    (Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
    ATeN Center, Università di Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo, Italy)

  • Claudio Colletti

    (3SUN-Enel Green Power SpA Contrada Blocco Torrazze, Zona Industriale Catania, 95121 Catania, Italy)

Abstract

In the last two decades, the continuous, ever-growing demand for energy has driven significant development in the production of photovoltaic (PV) modules. A critical issue in the module design process is the adoption of suitable encapsulant materials and technologies for cell embedding. Adopted encapsulants have a significant impact on module efficiency, stability, and reliability. In addition, to ensure the unchanged performance of PV modules in time, the encapsulant materials must be selected properly. The selection of encapsulant materials must maintain a good balance between the encapsulant performance in time and costs, related to materials production and technologies for cells embedding. However, the encapsulants must ensure excellent isolation of active photovoltaic elements from the environment, preserving the PV cells against humidity, oxygen, and accidental damage that may compromise the PV module’s function. This review provides an overview of different encapsulant materials, their main advantages and disadvantages in adoption for PV production, and, in relation to encapsulant technologies used for cell embedding, additives and the interaction of these materials with other PV components.

Suggested Citation

  • Nadka Tz. Dintcheva & Elisabetta Morici & Claudio Colletti, 2023. "Encapsulant Materials and Their Adoption in Photovoltaic Modules: A Brief Review," Sustainability, MDPI, vol. 15(12), pages 1-13, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9453-:d:1169395
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oliveira, Michele Cândida Carvalho de & Diniz Cardoso, Antônia Sonia Alves & Viana, Marcelo Machado & Lins, Vanessa de Freitas Cunha, 2018. "The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2299-2317.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    2. Hyeonwook Park & Wonshoup So & Woo Kyoung Kim, 2021. "Performance Evaluation of Photovoltaic Modules by Combined Damp Heat and Temperature Cycle Test," Energies, MDPI, vol. 14(11), pages 1-12, June.
    3. Hamed Hanifi & Bengt Jaeckel & Matthias Pander & David Dassler & Sagarika Kumar & Jens Schneider, 2022. "Techno-Economic Assessment of Half-Cell Modules for Desert Climates: An Overview on Power, Performance, Durability and Costs," Energies, MDPI, vol. 15(9), pages 1-21, April.
    4. Fatih Selimefendigil & Damla Okulu & Hakan F. Öztop, 2023. "Photovoltaic Thermal Management by Combined Utilization of Thermoelectric Generator and Power-Law-Nanofluid-Assisted Cooling Channel," Sustainability, MDPI, vol. 15(6), pages 1-29, March.
    5. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    6. Jaeun Kim & Matheus Rabelo & Siva Parvathi Padi & Hasnain Yousuf & Eun-Chel Cho & Junsin Yi, 2021. "A Review of the Degradation of Photovoltaic Modules for Life Expectancy," Energies, MDPI, vol. 14(14), pages 1-21, July.
    7. Jongwon Ko & Kyunghwan Kim & Ji Woo Sohn & Hongjun Jang & Hae-Seok Lee & Donghwan Kim & Yoonmook Kang, 2023. "Review on Separation Processes of End-of-Life Silicon Photovoltaic Modules," Energies, MDPI, vol. 16(11), pages 1-20, May.
    8. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    9. Abdulwahab A. Q. Hasan & Ammar Ahmed Alkahtani & Seyed Ahmad Shahahmadi & Mohammad Nur E. Alam & Mohammad Aminul Islam & Nowshad Amin, 2021. "Delamination-and Electromigration-Related Failures in Solar Panels—A Review," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    10. Luo, Wei & Clement, Carlos Enrico & Khoo, Yong Sheng & Wang, Yan & Khaing, Aung Myint & Reindl, Thomas & Kumar, Abhishek & Pravettoni, Mauro, 2021. "Photovoltaic module failures after 10 years of operation in the tropics," Renewable Energy, Elsevier, vol. 177(C), pages 327-335.
    11. Liao, Qijun & Li, Shaoyuan & Xi, Fengshuo & Tong, Zhongqiu & Chen, Xiuhua & Wan, Xiaohan & Ma, Wenhui & Deng, Rong, 2023. "High-performance silicon carbon anodes based on value-added recycling strategy of end-of-life photovoltaic modules," Energy, Elsevier, vol. 281(C).
    12. Fernández-Solas, Álvaro & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2021. "Optical degradation impact on the spectral performance of photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Koester, L. & Lindig, S. & Louwen, A. & Astigarraga, A. & Manzolini, G. & Moser, D., 2022. "Review of photovoltaic module degradation, field inspection techniques and techno-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    14. Nivelle, Philippe & Tsanakas, John A. & Poortmans, Jef & Daenen, Michaël, 2021. "Stress and strain within photovoltaic modules using the finite element method: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Nain, Preeti & Kumar, Arun, 2020. "Understanding the possibility of material release from end-of-life solar modules: A study based on literature review and survey analysis," Renewable Energy, Elsevier, vol. 160(C), pages 903-918.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9453-:d:1169395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.