IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8506-d1154238.html
   My bibliography  Save this article

Development of Bioactive Peptides Derived from Red Algae for Dermal Care Applications: Recent Advances

Author

Listed:
  • Henna Mohi ud din Wani

    (Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
    These authors contributed equally to this work.)

  • Chiu-Wen Chen

    (Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
    These authors contributed equally to this work.)

  • Chun-Yung Huang

    (Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan)

  • Reeta Rani Singhania

    (Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
    Department of Chemical and Biological Engineering, Sookmyung Women’s University, Youngsan-gu, Seoul 04310, Republic of Korea)

  • Young Joon Sung

    (Department of Chemical and Biological Engineering, Sookmyung Women’s University, Youngsan-gu, Seoul 04310, Republic of Korea)

  • Cheng-Di Dong

    (Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan)

  • Anil Kumar Patel

    (Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
    Centre for Energy and Environmental Sustainability, Lucknow 226 029, India)

Abstract

Bioactive peptides produced from proteinaceous red algae biomass with varied structures have garnered much attention in biological applications and production. Unfortunately, there have been few studies on developing approaches to feasible bioactive peptide production and purification. Our goal with this article is to explore the latest trends in easily applicable approaches for extracting bioactive peptides for cutaneous applications. Bibliometric statistics show that the number of scientific publications is growing, with Asia ranking as the highest producer. Peptide purity and bioactivity are the most important factors to consider while extracting and identifying peptides using various separation techniques. To generate novel bioactive peptides with high yield and low cost, future research should focus on increasing the yields and improving the separation methods. Moreover, human clinical trials should be conducted to validate their potential health benefits. Thus, the final objective of this literature review was to give an insight into the bioactive properties of red algae-derived peptides, which have proven potential for dermal application with anti-melanogenic, collagenogenic, antioxidant, antiaging, and photoprotective activities, etc. Moreover, it covers the algal peptides’ scope for use in nutraceuticals and pharmaceuticals, and future studies for their emerging applications.

Suggested Citation

  • Henna Mohi ud din Wani & Chiu-Wen Chen & Chun-Yung Huang & Reeta Rani Singhania & Young Joon Sung & Cheng-Di Dong & Anil Kumar Patel, 2023. "Development of Bioactive Peptides Derived from Red Algae for Dermal Care Applications: Recent Advances," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8506-:d:1154238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Halim, Ronald & Harun, Razif & Danquah, Michael K. & Webley, Paul A., 2012. "Microalgal cell disruption for biofuel development," Applied Energy, Elsevier, vol. 91(1), pages 116-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    2. Arcigni, Francesco & Friso, Riccardo & Collu, Maurizio & Venturini, Mauro, 2019. "Harmonized and systematic assessment of microalgae energy potential for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 614-624.
    3. Hu, Yulin & Gong, Mengyue & Feng, Shanghuan & Xu, Chunbao (Charles) & Bassi, Amarjeet, 2019. "A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 476-492.
    4. Yusaf, Talal & Al-Juboori, Raed A., 2014. "Alternative methods of microorganism disruption for agricultural applications," Applied Energy, Elsevier, vol. 114(C), pages 909-923.
    5. Amarnath Krishnamoorthy & Cristina Rodriguez & Andy Durrant, 2022. "Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    6. Ayesha Aslam & Sumaira Rasul & Ali Bahadar & Nazia Hossain & Muhammad Saleem & Sabir Hussain & Lubna Rasool & Hamid Manzoor, 2021. "Effect of Micronutrient and Hormone on Microalgae Growth Assessment for Biofuel Feedstock," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    7. Ngamsirisomsakul, Marika & Reungsang, Alissara & Liao, Qiang & Kongkeitkajorn, Mallika Boonmee, 2019. "Enhanced bio-ethanol production from Chlorella sp. biomass by hydrothermal pretreatment and enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 141(C), pages 482-492.
    8. Zheng, Heshan & Wang, Yu & Li, Shuo & Nagarajan, Dillirani & Varjani, Sunita & Lee, Duu-Jong & Chang, Jo-Shu, 2022. "Recent advances in lutein production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Oncel, Suphi S., 2013. "Microalgae for a macroenergy world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 241-264.
    10. Chukwuma Onumaegbu & Abed Alaswad & Cristina Rodriguez & Abdul G. Olabi, 2018. "Optimization of Pre-Treatment Process Parameters to Generate Biodiesel from Microalga," Energies, MDPI, vol. 11(4), pages 1-16, March.
    11. Onumaegbu, C. & Mooney, J. & Alaswad, A. & Olabi, A.G., 2018. "Pre-treatment methods for production of biofuel from microalgae biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 16-26.
    12. Salam, Kamoru A. & Velasquez-Orta, Sharon B. & Harvey, Adam P., 2016. "A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co-product-a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1179-1198.
    13. McMillan, Jonathan R. & Watson, Ian A. & Ali, Mehmood & Jaafar, Weaam, 2013. "Evaluation and comparison of algal cell disruption methods: Microwave, waterbath, blender, ultrasonic and laser treatment," Applied Energy, Elsevier, vol. 103(C), pages 128-134.
    14. Sun, Han & Wu, Tao & Chen, Stephenie Hiu Yuet & Ren, Yuanyuan & Yang, Shufang & Huang, Junchao & Mou, Haijin & Chen, Feng, 2021. "Powerful tools for productivity improvements in microalgal production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Han, Song-Fang & Jin, Wenbiao & Yang, Qian & El-Fatah Abomohra, Abd & Zhou, Xu & Tu, Renjie & Chen, Chuan & Xie, Guo-Jun & Wang, Qilin, 2019. "Application of pulse electric field pretreatment for enhancing lipid extraction from Chlorella pyrenoidosa grown in wastewater," Renewable Energy, Elsevier, vol. 133(C), pages 233-239.
    16. Menegazzo, Mariana Lara & Fonseca, Gustavo Graciano, 2019. "Biomass recovery and lipid extraction processes for microalgae biofuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 87-107.
    17. Saddam H. Al-lwayzy & Talal Yusaf & Raed A. Al-Juboori, 2014. "Biofuels from the Fresh Water Microalgae Chlorella vulgaris (FWM-CV) for Diesel Engines," Energies, MDPI, vol. 7(3), pages 1-23, March.
    18. Zhang, Yi & Kong, Xiaoying & Wang, Zhongming & Sun, Yongming & Zhu, Shunni & Li, Lianhua & Lv, Pengmei, 2018. "Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp," Renewable Energy, Elsevier, vol. 125(C), pages 1049-1057.
    19. D’Alessandro, Emmanuel B. & Antoniosi Filho, Nelson R., 2016. "Concepts and studies on lipid and pigments of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 832-841.
    20. Islam, Muhammad Aminul & Heimann, Kirsten & Brown, Richard J., 2017. "Microalgae biodiesel: Current status and future needs for engine performance and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1160-1170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8506-:d:1154238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.