IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p7975-d1146234.html
   My bibliography  Save this article

A Systematic Design Framework for Zero Carbon Campuses: Investigating the Shanghai Jiao Tong University Fahua Campus Case

Author

Listed:
  • Lingyu Wang

    (School of Design, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Xingyun Yan

    (School of Design, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Mingzhu Fang

    (School of Design, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Hua Song

    (Design & Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China)

  • Jie Hu

    (School of Design, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

Since the global zero carbon goal was proposed, most higher education institutions around the world are still in the process of transitioning towards carbon neutrality. However, there is still a research gap in the systematic design strategy for a zero carbon campus. This study adopts a qualitative literature analysis approach to establish a theoretical framework for a zero carbon campus design. The framework hierarchically outlines the One Top-Down vision of carbon neutrality, two complementary paths of carbon emission reduction and carbon sink, specific implementation strategies based on the coupling of the social, technological, and ecological dimensions, as well as the establishment of a carbon-neutral smart services platform. Subsequently, a case study was conducted at the Fahua campus of Shanghai Jiao Tong University, guided by this theoretical framework. This study not only completed the modeling and visualization of the carbon-neutral systematic design of the campus but also attempted to conceive of people-centered services under the zero carbon commitment and emphasized the critical role of university campus culture and historical connotations in the carbon-upgrading process. The results showed that the establishment of this theoretical framework can inspire innovative localized carbon-neutral solutions for campus, empower the replicability of advanced zero carbon campuses, and more effectively promote the carbon neutrality development of communities and cities.

Suggested Citation

  • Lingyu Wang & Xingyun Yan & Mingzhu Fang & Hua Song & Jie Hu, 2023. "A Systematic Design Framework for Zero Carbon Campuses: Investigating the Shanghai Jiao Tong University Fahua Campus Case," Sustainability, MDPI, vol. 15(10), pages 1-31, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7975-:d:1146234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/7975/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/7975/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ebiyon Idundun & Andrew S. Hursthouse & Iain McLellan, 2021. "Carbon Management in UK Higher Education Institutions: An Overview," Sustainability, MDPI, vol. 13(19), pages 1-16, September.
    2. Ning Wang & Weisheng Xu & Zhiyu Xu & Weihui Shao, 2018. "Peer-to-Peer Energy Trading among Microgrids with Multidimensional Willingness," Energies, MDPI, vol. 11(12), pages 1-22, November.
    3. Gu, Yifan & Wang, Hongtao & Xu, Jin & Wang, Ying & Wang, Xin & Robinson, Zoe P. & Li, Fengting & Wu, Jiang & Tan, Jianguo & Zhi, Xing, 2019. "Quantification of interlinked environmental footprints on a sustainable university campus: A nexus analysis perspective," Applied Energy, Elsevier, vol. 246(C), pages 65-76.
    4. Kourgiozou, Vasiliki & Commin, Andrew & Dowson, Mark & Rovas, Dimitrios & Mumovic, Dejan, 2021. "Scalable pathways to net zero carbon in the UK higher education sector: A systematic review of smart energy systems in university campuses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Tian, Xueyu & Zhou, Yilun & Morris, Brianna & You, Fengqi, 2022. "Sustainable design of Cornell University campus energy systems toward climate neutrality and 100% renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Zhao, Ning & You, Fengqi, 2020. "Can renewable generation, energy storage and energy efficient technologies enable carbon neutral energy transition?," Applied Energy, Elsevier, vol. 279(C).
    7. Marvuglia, Antonino & Havinga, Lisanne & Heidrich, Oliver & Fonseca, Jimeno & Gaitani, Niki & Reckien, Diana, 2020. "Advances and challenges in assessing urban sustainability: an advanced bibliometric review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    8. Helene Ahlborg & Ilse Ruiz-Mercado & Sverker Molander & Omar Masera, 2019. "Bringing Technology into Social-Ecological Systems Research—Motivations for a Socio-Technical-Ecological Systems Approach," Sustainability, MDPI, vol. 11(7), pages 1-23, April.
    9. Feng, Jing-Chun & Yan, Jinyue & Yu, Zhi & Zeng, Xuelan & Xu, Weijia, 2018. "Case study of an industrial park toward zero carbon emission," Applied Energy, Elsevier, vol. 209(C), pages 65-78.
    10. Olivieri, Lorenzo & Caamaño-Martín, Estefanía & Sassenou, Louise-Nour & Olivieri, Francesca, 2020. "Contribution of photovoltaic distributed generation to the transition towards an emission-free supply to university campus: technical, economic feasibility and carbon emission reduction at the Univers," Renewable Energy, Elsevier, vol. 162(C), pages 1703-1714.
    11. Adriana Del Borghi & Thomas Spiegelhalter & Luca Moreschi & Michela Gallo, 2021. "Carbon-Neutral-Campus Building: Design Versus Retrofitting of Two University Zero Energy Buildings in Europe and in the United States," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    12. Emeakaroha, Anthony & Ang, Chee Siang & Yan, Yong & Hopthrow, Tim, 2014. "Integrating persuasive technology with energy delegates for energy conservation and carbon emission reduction in a university campus," Energy, Elsevier, vol. 76(C), pages 357-374.
    13. Raymond, Christopher M. & Frantzeskaki, Niki & Kabisch, Nadja & Berry, Pam & Breil, Margaretha & Nita, Mihai Razvan & Geneletti, Davide & Calfapietra, Carlo, 2017. "A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas," Environmental Science & Policy, Elsevier, vol. 77(C), pages 15-24.
    14. Eckard Helmers & Chia Chien Chang & Justin Dauwels, 2022. "Carbon Footprinting of Universities Worldwide Part II: First Quantification of Complete Embodied Impacts of Two Campuses in Germany and Singapore," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak & Łukasz Baran & Tomasz Barcz & Przemysław Kołaczyński & Wojciech Suchecki, 2023. "Investing in Distributed Generation Technologies at Polish University Campuses during the Energy Transition Era," Energies, MDPI, vol. 16(12), pages 1-24, June.
    2. Wei, Xintong & Qiu, Rui & Liang, Yongtu & Liao, Qi & Klemeš, Jiří Jaromír & Xue, Jinjun & Zhang, Haoran, 2022. "Roadmap to carbon emissions neutral industrial parks: Energy, economic and environmental analysis," Energy, Elsevier, vol. 238(PA).
    3. Kourgiozou, Vasiliki & Commin, Andrew & Dowson, Mark & Rovas, Dimitrios & Mumovic, Dejan, 2021. "Scalable pathways to net zero carbon in the UK higher education sector: A systematic review of smart energy systems in university campuses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Li, Ruishi & Zhao, Rongqin & Xie, Zhixiang & Xiao, Liangang & Chuai, Xiaowei & Feng, Mengyu & Zhang, Huifang & Luo, Huili, 2022. "Water–energy–carbon nexus at campus scale: Case of North China University of Water Resources and Electric Power," Energy Policy, Elsevier, vol. 166(C).
    5. Tandarić, Neven & Ives, Christopher D. & Watkins, Charles, 2022. "From city in the park to “greenery in plant pots”: The influence of socialist and post-socialist planning on opportunities for cultural ecosystem services," Land Use Policy, Elsevier, vol. 120(C).
    6. Floris C. Boogaard & Guri Venvik & Rui L. Pedroso de Lima & Ana C. Cassanti & Allard H. Roest & Antal Zuurman, 2020. "ClimateCafé: An Interdisciplinary Educational Tool for Sustainable Climate Adaptation and Lessons Learned," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
    7. Park, Sung-Won & Zhang, Zhong & Li, Furong & Son, Sung-Yong, 2021. "Peer-to-peer trading-based efficient flexibility securing mechanism to support distribution system stability," Applied Energy, Elsevier, vol. 285(C).
    8. Mutlu, Asli & Roy, Debraj & Filatova, Tatiana, 2023. "Capitalized value of evolving flood risks discount and nature-based solution premiums on property prices," Ecological Economics, Elsevier, vol. 205(C).
    9. Silverio HERNANDEZ-MORENO, 2019. "International Experiences On The Implementation Of Public Policies For Urban Planning To Face Climate Change," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 14(2), pages 72-88, May.
    10. Liziane Araújo da Silva & Ana Regina de Aguiar Dutra & José Baltazar Salgueirinho Osório de Andrade Guerra, 2023. "Decarbonization in Higher Education Institutions as a Way to Achieve a Green Campus: A Literature Review," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    11. Ning Wang & Weisheng Xu & Weihui Shao & Zhiyu Xu, 2019. "A Q-Cube Framework of Reinforcement Learning Algorithm for Continuous Double Auction among Microgrids," Energies, MDPI, vol. 12(15), pages 1-26, July.
    12. Camila I. Donatti & Celia A. Harvey & David Hole & Steven N. Panfil & Hanna Schurman, 2020. "Indicators to measure the climate change adaptation outcomes of ecosystem-based adaptation," Climatic Change, Springer, vol. 158(3), pages 413-433, February.
    13. Simon Stork & Rolf Morgenstern & Bernd Pölling & Jan-Henning Feil, 2023. "Holistic Business Model Conceptualisation—Capturing Sustainability Contributions Illustrated by Nature-Based Solutions," Sustainability, MDPI, vol. 15(19), pages 1-20, September.
    14. Huihui Liu & Pim Martens, 2023. "Stakeholder Participation for Nature-Based Solutions: Inspiration for Rural Area’s Sustainability in China," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    15. Peter J. Irga & Fraser R. Torpy & Daniel Griffin & Sara J. Wilkinson, 2023. "Vertical Greening Systems: A Perspective on Existing Technologies and New Design Recommendation," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    16. Silvia Vela & Chiara Calderini & Paolo Rosasco & Carlo Strazza, 2022. "Economic and Environmental Evaluation of a Single-Story Steel Building in Its Life Cycle: A Comprehensive Analysis," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    17. Chun Xia-Bauer & Florin Vondung & Stefan Thomas & Raphael Moser, 2022. "Business Model Innovations for Renewable Energy Prosumer Development in Germany," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    18. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    19. Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Durán Gómez & Pablo Carrasco Ortega, 2022. "Profitability of Batteries in Photovoltaic Systems for Small Industrial Consumers in Spain under Current Regulatory Framework and Energy Prices," Energies, MDPI, vol. 16(1), pages 1-19, December.
    20. Zhaonian Ye & Yongzhen Wang & Kai Han & Changlu Zhao & Juntao Han & Yilin Zhu, 2023. "Bi-Objective Optimization and Emergy Analysis of Multi-Distributed Energy System Considering Shared Energy Storage," Sustainability, MDPI, vol. 15(2), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7975-:d:1146234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.