IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5343-d804852.html
   My bibliography  Save this article

Finding the Optimal Bus-Overtaking Rules for Bus Stops with Two Tandem Berths

Author

Listed:
  • Lu Liu

    (College of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Zhanglei Bian

    (College of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

  • Qinghui Nie

    (College of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China)

Abstract

Overtaking rule is a key factor for the estimation of bus discharge flow and bus delay at stops. In general, there are four kinds of overtaking rules, namely no-overtaking, enter-overtaking, exit-overtaking and free-overtaking. This paper studies a two-berth tandem bus stop in a saturated state and proposes calculation models for the maximum bus discharge flow and average berth blocking time under different overtaking rules. Cellular automata simulation is applied to verify the model’s reliability. Then the influence of bus dwell time characteristics and overtaking rules are analyzed. Results show that overtaking has a positive impact on the maximum bus discharge flow and average berth blocking time to a certain extent. If only one overtaking behavior is allowed, the exit-overtaking rule is recommended. The study reveals that overtaking behavior plays an important role in bus service level and operational efficiency. Bus-overtaking rules are suggested to be changed with different bus flow states to obtain the optimal berth effectiveness.

Suggested Citation

  • Lu Liu & Zhanglei Bian & Qinghui Nie, 2022. "Finding the Optimal Bus-Overtaking Rules for Bus Stops with Two Tandem Berths," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5343-:d:804852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shen, Minyu & Gu, Weihua & Hu, Sangen & Cheng, Han, 2019. "Capacity approximations for near- and far-side bus stops in dedicated bus lanes," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 94-120.
    2. Gu, Weihua & Li, Yuwei & Cassidy, Michael J. & Griswold, Julia B., 2011. "On the capacity of isolated, curbside bus stops," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 714-723, May.
    3. Weihua Gu & Michael J. Cassidy & Yuwei Li, 2015. "Models of Bus Queueing at Curbside Stops," Transportation Science, INFORMS, vol. 49(2), pages 204-212, May.
    4. Bomin Bian & Michael Pinedo & Ning Zhu & Shoufeng Ma, 2019. "Performance Analysis of Overtaking Maneuvers at Bus Stops with Tandem Berths," Transportation Science, INFORMS, vol. 53(2), pages 597-618, March.
    5. Rodrigo Fernandez & Rosemarie Planzer, 2002. "On the capacity of bus transit systems," Transport Reviews, Taylor & Francis Journals, vol. 22(3), pages 267-293, January.
    6. Jonathan M. Bunker, 2018. "High volume bus stop upstream average waiting time for working capacity and quality of service," Public Transport, Springer, vol. 10(2), pages 311-333, August.
    7. Yunqiang Xue & Meng Zhong & Luowei Xue & Bing Zhang & Haokai Tu & Caifeng Tan & Qifang Kong & Hongzhi Guan, 2022. "Simulation Analysis of Bus Passenger Boarding and Alighting Behavior Based on Cellular Automata," Sustainability, MDPI, vol. 14(4), pages 1-16, February.
    8. Borja Alonso & José Luis Moura & Angel Ibeas & Luigi dell'Olio, 2013. "Analytical model for calibrating delay at congested bus stops," Transportation Planning and Technology, Taylor & Francis Journals, vol. 36(6), pages 520-528, August.
    9. Daganzo, Carlos F., 2010. "Structure of competitive transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 434-446, May.
    10. Cremer, M. & Ludwig, J., 1986. "A fast simulation model for traffic flow on the basis of boolean operations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 28(4), pages 297-303.
    11. Daganzo, Carlos F., 2009. "A headway-based approach to eliminate bus bunching: Systematic analysis and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 913-921, December.
    12. Gu, Weihua & Cassidy, Michael J., 2013. "Maximizing bus discharge flows from multi-berth stops by regulating exit maneuvers," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 254-264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Sangen & Shen, Minyu & Gu, Weihua, 2023. "Impacts of bus overtaking policies on the capacity of bus stops," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minyu Shen & Weihua Gu & Michael J. Cassidy & Yongjie Lin & Wei Ni, 2024. "A vicious cycle along busy bus corridors and how to abate it," Papers 2403.08230, arXiv.org.
    2. Hu, Sangen & Shen, Minyu & Gu, Weihua, 2023. "Impacts of bus overtaking policies on the capacity of bus stops," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    3. Shen, Minyu & Gu, Weihua & Hu, Sangen & Cheng, Han, 2019. "Capacity approximations for near- and far-side bus stops in dedicated bus lanes," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 94-120.
    4. Bomin Bian & Michael Pinedo & Ning Zhu & Shoufeng Ma, 2019. "Performance Analysis of Overtaking Maneuvers at Bus Stops with Tandem Berths," Transportation Science, INFORMS, vol. 53(2), pages 597-618, March.
    5. Bai, Qiaowen & Ong, Ghim Ping, 2023. "Similarity-based bus services assignment with capacity constraint for staggered bus stops," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    6. Weihua Gu & Michael J. Cassidy & Yuwei Li, 2015. "Models of Bus Queueing at Curbside Stops," Transportation Science, INFORMS, vol. 49(2), pages 204-212, May.
    7. Badia, Hugo & Estrada, Miquel & Robusté, Francesc, 2014. "Competitive transit network design in cities with radial street patterns," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 161-181.
    8. Dakic, Igor & Yang, Kaidi & Menendez, Monica & Chow, Joseph Y.J., 2021. "On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 38-59.
    9. Tang, Qing & Hu, Xianbiao & Lu, Jiawei & Zhou, Xuesong, 2021. "Analytical characterization of multi-state effective discharge rates for bus-only lane conversion scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 106-131.
    10. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    11. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    12. Coulombel, Nicolas & Monchambert, Guillaume, 2023. "Diseconomies of scale and subsidies in urban public transportation," Journal of Public Economics, Elsevier, vol. 223(C).
    13. Bian, Bomin & Zhu, Ning & Meng, Qiang, 2023. "Real-time cruising speed design approach for multiline bus systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 1-24.
    14. Luigi Moccia & Duncan W. Allen & Eric C. Bruun, 2018. "A technology selection and design model of a semi-rapid transit line," Public Transport, Springer, vol. 10(3), pages 455-497, December.
    15. Chen, Zhiwei & Li, Xiaopeng & Zhou, Xuesong, 2020. "Operational design for shuttle systems with modular vehicles under oversaturated traffic: Continuous modeling method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 76-100.
    16. Yunqiang Xue & Meng Zhong & Luowei Xue & Haokai Tu & Caifeng Tan & Qifang Kong & Hongzhi Guan, 2022. "A Real-Time Control Strategy for Bus Operation to Alleviate Bus Bunching," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    17. Ansari Esfeh, Mohammad & Saidi, Saeid & Wirasinghe, S.C. & Kattan, Lina, 2022. "Waiting time and headway modeling considering unreliability in transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 219-233.
    18. Minh Sang Pham Do & Ketoma Vix Kemanji & Man Dinh Vinh Nguyen & Tuan Anh Vu & Gerrit Meixner, 2023. "The Action Point Angle of Sight: A Traffic Generation Method for Driving Simulation, as a Small Step to Safe, Sustainable and Smart Cities," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    19. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    20. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5343-:d:804852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.