IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5126-d801079.html
   My bibliography  Save this article

Environmental Factors at Different Canopy Heights Had Significant Effects on Leaf Water-Use Efficiency in Cold-Temperate Larch Forest

Author

Listed:
  • Zhaoxin Ge

    (School of Forestry, Northeast Forestry University, Harbin 150040, China
    Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China)

  • Xiuling Man

    (School of Forestry, Northeast Forestry University, Harbin 150040, China)

  • Tijiu Cai

    (Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China)

  • Beixing Duan

    (School of Forestry, Northeast Forestry University, Harbin 150040, China
    Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China)

  • Ruihan Xiao

    (School of Forestry, Northeast Forestry University, Harbin 150040, China
    Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China)

  • Zhipeng Xu

    (School of Forestry, Northeast Forestry University, Harbin 150040, China
    Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China)

Abstract

It is of great significance to study short-term water-use efficiency (WUE s ) at different canopy heights for accurately evaluating the adaptability of cold-temperate larch ( Larix gmelinii ) forest to climate change. The stable isotope method combining data of gradient meteorology, photosynthetic properties and leaf structure were used to assess the influence of different canopy heights on short-term water-use efficiency (WUE s ) in larch forests in the northern Da Hinggan Mountains. The results show that: (1) The rank of leaf WUE s at different canopy heights was upper canopy > middle canopy > lower canopy. The leaf WUE s in upper canopy was significantly higher than those in the middle and lower canopy ( p < 0.01), and no significant difference was found between the middle and lower canopy ( p > 0.05). (2) The environmental factors, the photosynthetic characteristics, the specific leaf weight (LMA) and stomatal density (SD) had significant impact ( p < 0.05) on leaf WUE s at different canopy heights of larch forest. (3) The results of the weighted random forest analysis show that the main factor affecting WUE s in larch forests at different canopy heights was vapor pressure deficit (VPD), followed by relative humidity (RH) and net photosynthetic rate (Pn), while LMA and SD made relatively small contributions. This indicates that the variation of leaf WUE s at different canopy heights is mainly due to environmental factors. Our results highlight that the difference of environmental factors at different canopy heights should be considered in the future study of leaf WUE. Our results contribute to a better understanding of water utilization strategies and carbohydrate relations in the boreal forest ecosystems, which is of great significance for improving the sustainable management measures and strategies of boreal forest resources.

Suggested Citation

  • Zhaoxin Ge & Xiuling Man & Tijiu Cai & Beixing Duan & Ruihan Xiao & Zhipeng Xu, 2022. "Environmental Factors at Different Canopy Heights Had Significant Effects on Leaf Water-Use Efficiency in Cold-Temperate Larch Forest," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5126-:d:801079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5126/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, E.K. & Mei, X.R. & Yan, C.R. & Gong, D.Z. & Zhang, Y.Q., 2016. "Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes," Agricultural Water Management, Elsevier, vol. 167(C), pages 75-85.
    2. Trevor F. Keenan & David Y. Hollinger & Gil Bohrer & Danilo Dragoni & J. William Munger & Hans Peter Schmid & Andrew D. Richardson, 2013. "Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise," Nature, Nature, vol. 499(7458), pages 324-327, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Sien & Kang, Shaozhong & Zhang, Lu & Du, Taisheng & Tong, Ling & Ding, Risheng & Guo, Weihua & Zhao, Peng & Chen, Xia & Xiao, Huan, 2015. "Ecosystem water use efficiency for a sparse vineyard in arid northwest China," Agricultural Water Management, Elsevier, vol. 148(C), pages 24-33.
    2. Lv, Zhaoyan & Diao, Ming & Li, Weihua & Cai, Jian & Zhou, Qin & Wang, Xiao & Dai, Tingbo & Cao, Weixing & Jiang, Dong, 2019. "Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system," Agricultural Water Management, Elsevier, vol. 212(C), pages 252-261.
    3. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng, 2022. "Optimization of drip irrigation and fertilization regimes to enhance winter wheat grain yield by improving post-anthesis dry matter accumulation and translocation in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Mo, Yan & Zhang, Baozhong, 2021. "Straw mulching improves soil water content, increases flag leaf photosynthetic parameters and maintaines the yield of winter wheat with different irrigation amounts," Agricultural Water Management, Elsevier, vol. 249(C).
    5. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Lu, Yang & Yan, Zongzheng & Li, Lu & Gao, Congshuai & Shao, Liwei, 2020. "Selecting traits to improve the yield and water use efficiency of winter wheat under limited water supply," Agricultural Water Management, Elsevier, vol. 242(C).
    7. Simioni, Guillaume & Marie, Guillaume & Davi, Hendrik & Martin-St Paul, Nicolas & Huc, Roland, 2020. "Natural forest dynamics have more influence than climate change on the net ecosystem production of a mixed Mediterranean forest," Ecological Modelling, Elsevier, vol. 416(C).
    8. Qiang, Shengcai & Zhang, Yan & Fan, Junliang & Zhang, Fucang & Sun, Min & Gao, Zhiqiang, 2022. "Combined effects of ridge–furrow ratio and urea type on grain yield and water productivity of rainfed winter wheat on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 261(C).
    9. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    10. Feng, Dingrao & Bao, Wenkai & Yang, Yuanyuan & Fu, Meichen, 2021. "How do government policies promote greening? Evidence from China," Land Use Policy, Elsevier, vol. 104(C).
    11. Guo, Liangliang & Wang, Xuejie & Wang, Shaobo & Tan, Dechong & Han, Huifang & Ning, Tangyuan & Li, Quanqi, 2019. "Tillage and irrigation effects on carbon emissions and water use of summer maize in North China Plains," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    12. Yu, Haichao & Li, Sien & Ding, Jie & Yang, Tianyi & Wang, Yuexin, 2023. "Water use efficiency and its drivers of two typical cash crops in an arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    13. Gustavo Soares Wenneck & Reni Saath & Roberto Rezende & Lucas Henrique Maldonado da Silva & Daniele de Souza Terassi & Vinicius Villa e Vila & Adriana Lima Moro & Andre Felipe Barion Alves Andrean, 2024. "Gas Exchange in Tomato under Different Water Management in Cultivation," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 17(1), pages 1-58, January.
    14. David L. Miller & Sebastian Wolf & Joshua B. Fisher & Benjamin F. Zaitchik & Jingfeng Xiao & Trevor F. Keenan, 2023. "Increased photosynthesis during spring drought in energy-limited ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Jiang, Shouzheng & Wu, Jie & Wang, Zhihui & He, Ziling & Wang, Mingjun & Yao, Weiwei & Feng, Yu, 2023. "Spatiotemporal variations of cropland carbon sequestration and water loss across China," Agricultural Water Management, Elsevier, vol. 287(C).
    16. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of multi-level water use efficiency between plastic film partially mulched and non-mulched croplands at eastern Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 179(C), pages 215-226.
    17. Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Ma, Xiangcheng & Sohail, Amir & Manzoor, & Arif, Muhammad & Ren, Xiaolong & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2019. "The ridge-furrow system combined with supplemental irrigation strategies to improves radiation use efficiency and winter wheat productivity in semi-arid regions of China," Agricultural Water Management, Elsevier, vol. 213(C), pages 76-86.
    18. Tian, Xin & Dong, Jianzhi & Jin, Shuangyan & He, Hai & Yin, Hao & Chen, Xi, 2023. "Climate change impacts on regional agricultural irrigation water use in semi-arid environments," Agricultural Water Management, Elsevier, vol. 281(C).
    19. Bingqian Liu & Chunchun An & Shuying Jiao & Fengyuan Jia & Ruilin Liu & Qicong Wu & Zhi Dong, 2022. "Impacts of the Inoculation of Piriformospora indica on Photosynthesis, Osmoregulatory Substances, and Antioxidant Enzymes of Alfalfa Seedlings under Cadmium Stress," Agriculture, MDPI, vol. 12(11), pages 1-13, November.
    20. Brèteau-Amores, Sandrine & Brunette, Marielle & Davi, Hendrik, 2019. "An Economic Comparison of Adaptation Strategies Towards a Drought-induced Risk of Forest Decline," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5126-:d:801079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.