IDEAS home Printed from https://ideas.repec.org/a/ibn/jsd123/v17y2024i1p58.html
   My bibliography  Save this article

Gas Exchange in Tomato under Different Water Management in Cultivation

Author

Listed:
  • Gustavo Soares Wenneck
  • Reni Saath
  • Roberto Rezende
  • Lucas Henrique Maldonado da Silva
  • Daniele de Souza Terassi
  • Vinicius Villa e Vila
  • Adriana Lima Moro
  • Andre Felipe Barion Alves Andrean

Abstract

The water management in the tomato crop has a direct effect on the development and yield, however the gas exchange rates of the plant can be influenced by the management and evaluation period. The study aimed to analyze gas exchange in tomato, in full production, in plants cultivated under different water management. The experiment was conducted in a completely randomized design with two water conditions during cultivation (with deficit and without deficit). The management of the water deficit adopted using different depths of water replacement, under water deficit the replacement of 60% of the crop evapotranspiration (ETc) was carried out while in the condition without deficit there was replacement of 100% of the ETc. The determination of gas exchanges, in a period with full production, was performed at 70 and 71 days after transplanting, determining photosynthesis (A), stomatal conductance (Gs), internal CO2 (Ci) and transpiration (E). From the A/E ratio, the intrinsic water use efficiency (iWUE) was calculated. The data were submitted to analysis of variances and the means compared by the Tukey test with 5% of significance. There is significant variation in gas exchange rates depending on the water management adopted and evaluation period. Water deficit has a cumulative effect on plants. Tomato plants cultivated with water deficit (60% of ETc) have lower rates of gas exchange, with no full recovery of rates even after irrigation. Tomato plants grown without water deficit (100% of ETc) show adaptation and compensation in gas exchange due to soil drying.

Suggested Citation

  • Gustavo Soares Wenneck & Reni Saath & Roberto Rezende & Lucas Henrique Maldonado da Silva & Daniele de Souza Terassi & Vinicius Villa e Vila & Adriana Lima Moro & Andre Felipe Barion Alves Andrean, 2024. "Gas Exchange in Tomato under Different Water Management in Cultivation," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 17(1), pages 1-58, January.
  • Handle: RePEc:ibn:jsd123:v:17:y:2024:i:1:p:58
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jsd/article/download/0/0/49590/53574
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jsd/article/view/0/49590
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alou, I.N. & Steyn, J.M. & Annandale, J.G. & van der Laan, M., 2018. "Growth, phenological, and yield response of upland rice (Oryza sativa L. cv. Nerica 4®) to water stress during different growth stages," Agricultural Water Management, Elsevier, vol. 198(C), pages 39-52.
    2. Liu, E.K. & Mei, X.R. & Yan, C.R. & Gong, D.Z. & Zhang, Y.Q., 2016. "Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes," Agricultural Water Management, Elsevier, vol. 167(C), pages 75-85.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Zhaoyan & Diao, Ming & Li, Weihua & Cai, Jian & Zhou, Qin & Wang, Xiao & Dai, Tingbo & Cao, Weixing & Jiang, Dong, 2019. "Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system," Agricultural Water Management, Elsevier, vol. 212(C), pages 252-261.
    2. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng, 2022. "Optimization of drip irrigation and fertilization regimes to enhance winter wheat grain yield by improving post-anthesis dry matter accumulation and translocation in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Mo, Yan & Zhang, Baozhong, 2021. "Straw mulching improves soil water content, increases flag leaf photosynthetic parameters and maintaines the yield of winter wheat with different irrigation amounts," Agricultural Water Management, Elsevier, vol. 249(C).
    4. Martínez-Eixarch, Maite & Alcaraz, Carles & Guàrdia, Mercè & Català-Forner, Mar & Bertomeu, Andrea & Monaco, Stefano & Cochrane, Nicole & Oliver, Viktoria & Teh, Yit Arn & Courtois, Brigitte & Price, , 2021. "Multiple environmental benefits of alternate wetting and drying irrigation system with limited yield impact on European rice cultivation: The Ebre Delta case," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Lu, Yang & Yan, Zongzheng & Li, Lu & Gao, Congshuai & Shao, Liwei, 2020. "Selecting traits to improve the yield and water use efficiency of winter wheat under limited water supply," Agricultural Water Management, Elsevier, vol. 242(C).
    6. Qiang, Shengcai & Zhang, Yan & Fan, Junliang & Zhang, Fucang & Sun, Min & Gao, Zhiqiang, 2022. "Combined effects of ridge–furrow ratio and urea type on grain yield and water productivity of rainfed winter wheat on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 261(C).
    7. Renan Souza Silva & Ananda Scherner & Cristiane Jovelina Da-Silva & Edinalvo Rabaioli Camargo & Roque Mauricio Palacios-Zuñiga & Fabio Schreiber & Luciano do Amarante & José Maria Barbat Parfitt & Lui, 2022. "Effect of Water Deficit on Growth and Photoassimilate Partitioning in Leersia hexandra and Luziola peruviana," Agriculture, MDPI, vol. 12(8), pages 1-15, August.
    8. Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Ma, Xiangcheng & Sohail, Amir & Manzoor, & Arif, Muhammad & Ren, Xiaolong & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2019. "The ridge-furrow system combined with supplemental irrigation strategies to improves radiation use efficiency and winter wheat productivity in semi-arid regions of China," Agricultural Water Management, Elsevier, vol. 213(C), pages 76-86.
    9. Bingqian Liu & Chunchun An & Shuying Jiao & Fengyuan Jia & Ruilin Liu & Qicong Wu & Zhi Dong, 2022. "Impacts of the Inoculation of Piriformospora indica on Photosynthesis, Osmoregulatory Substances, and Antioxidant Enzymes of Alfalfa Seedlings under Cadmium Stress," Agriculture, MDPI, vol. 12(11), pages 1-13, November.
    10. Guo, Yuling & Huang, Guanmin & Wei, Zexin & Feng, Tianyu & Zhang, Kun & Zhang, Mingcai & Li, Zhaohu & Zhou, Yuyi & Duan, Liusheng, 2023. "Exogenous application of coronatine and alginate oligosaccharide to maize seedlings enhanced drought tolerance at seedling and reproductive stages," Agricultural Water Management, Elsevier, vol. 279(C).
    11. Yuzhao Ma & Naikun Kuang & Shengzhe Hong & Fengli Jiao & Changyuan Liu & Quanqi Li, 2021. "Water productivity of two wheat genotypes in response to no-tillage in the North China Plain," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(4), pages 236-244.
    12. Zhijie Tian & Jingpeng Li & Xueying Jia & Fu Yang & Zhichun Wang, 2016. "Assimilation and Translocation of Dry Matter and Phosphorus in Rice Genotypes Affected by Salt-Alkaline Stress," Sustainability, MDPI, vol. 8(6), pages 1-14, June.
    13. Li, Yangyang & Liu, Ningning & Fan, Hua & Su, Jixia & Fei, Cong & Wang, Kaiyong & Ma, Fuyu & Kisekka, Isaya, 2019. "Effects of deficit irrigation on photosynthesis, photosynthate allocation, and water use efficiency of sugar beet," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    14. Fang, Heng & Liu, Fulai & Gu, Xiaobo & Chen, Pengpeng & Li, Yupeng & Li, Yuannong, 2022. "The effect of source–sink on yield and water use of winter wheat under ridge-furrow with film mulching and nitrogen fertilization," Agricultural Water Management, Elsevier, vol. 267(C).
    15. Muhammad Kashif Ejaz & Muhammad Aurangzaib & Rashid Iqbal & Muhammad Shahzaman & Muhammad Habib-ur-Rahman & Mohamed El-Sharnouby & Rahul Datta & Fahad M. Alzuaibr & Mohamed I. Sakran & Chukwuma C. Ogb, 2022. "The Use of Soil Conditioners to Ensure a Sustainable Wheat Yield under Water Deficit Conditions by Enhancing the Physiological and Antioxidant Potentials," Land, MDPI, vol. 11(3), pages 1-17, March.
    16. Ding, Jinli & Wu, Jicheng & Ding, Dianyuan & Yang, Yonghui & Gao, Cuimin & Hu, Wei, 2021. "Effects of tillage and straw mulching on the crop productivity and hydrothermal resource utilization in a winter wheat-summer maize rotation system," Agricultural Water Management, Elsevier, vol. 254(C).
    17. Li, Yibo & Song, He & Zhou, Li & Xu, Zhenzhu & Zhou, Guangsheng, 2019. "Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field," Agricultural Water Management, Elsevier, vol. 211(C), pages 190-201.
    18. Zheng, Chenghao & Wang, Ruoshui & Zhou, Xuan & Li, Chaonan & Dou, Xiaoyu, 2022. "Photosynthetic and growth characteristics of apple and soybean in an intercropping system under different mulch and irrigation regimes in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 266(C).
    19. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Wei, Ting & Ren, Xiaolong & Zhang, Peng & Din, Ruixia & Cai, Tie & Jia, Zhikuan, 2018. "Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 201(C), pages 207-218.
    20. Wan, Wenliang & Zhao, Yanhui & Wang, Zijian & Li, Liulong & Jing, Jianguo & Lv, Zhaoyan & Diao, Ming & Li, Weihua & Jiang, Guiying & Wang, Xiao & Jiang, Dong, 2022. "Mitigation fluctuations of inter-row water use efficiency of spring wheat via narrowing row space in enlarged lateral space drip irrigation systems," Agricultural Water Management, Elsevier, vol. 274(C).

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jsd123:v:17:y:2024:i:1:p:58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.