IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4034-d782225.html
   My bibliography  Save this article

Leveraging UAV Capabilities for Vehicle Tracking and Collision Risk Assessment at Road Intersections

Author

Listed:
  • Shuya Zong

    (Center for Connected and Automated Transportation (CCAT), Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA)

  • Sikai Chen

    (Center for Connected and Automated Transportation (CCAT), Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
    Robotics Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA)

  • Majed Alinizzi

    (Department of Civil Engineering, College of Engineering, Qassim University, Buraydah 51452, Saudi Arabia)

  • Samuel Labi

    (Center for Connected and Automated Transportation (CCAT), Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA)

Abstract

Transportation agencies continue to pursue crash reduction. Initiatives include the design of safer facilities, promotion of safe behaviors, and assessments of collision risk as a precursor to the identification of proactive countermeasures. Collision risk assessment includes reliable prediction of vehicle trajectories. Unfortunately, in using traditional tracking equipment, such prediction can be impaired by occlusion. It has been suggested in recent literature that unmanned aerial vehicles (UAVs) can be deployed to address this issue successfully, given their wide visual field and movement flexibility. This paper presents a methodology that integrates UAVs to track the movement of road users and to assess potential collisions at intersections. The proposed methodology includes an existing deep-learning-based algorithm to identify road users, extract trajectories, and calculate collision risk. The methodology was applied using a case study, and the results show that the methodology can provide beneficial information for the purpose of measuring and analyzing the infrastructure performance. Based on vehicle movements it observes, the UAV can communicate its collision risk to each vehicle so that the vehicle can undertake proactive driving decisions. Finally, the proposed framework can serve as a valuable tool for urban road agencies to develop measures to reduce crash risks.

Suggested Citation

  • Shuya Zong & Sikai Chen & Majed Alinizzi & Samuel Labi, 2022. "Leveraging UAV Capabilities for Vehicle Tracking and Collision Risk Assessment at Road Intersections," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4034-:d:782225
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4034/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4034/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Outay, Fatma & Mengash, Hanan Abdullah & Adnan, Muhammad, 2020. "Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 116-129.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan Wu & Jinlong Li & Yuzhuang Pian & Xiaochen Li & Zilin Huang & Lunhui Xu & Guilin Li & Ruonan Li, 2022. "How Determinants Affect Transfer Ridership between Metro and Bus Systems: A Multivariate Generalized Poisson Regression Analysis Method," Sustainability, MDPI, vol. 14(15), pages 1-31, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sikai Chen & Shuya Zong & Tiantian Chen & Zilin Huang & Yanshen Chen & Samuel Labi, 2023. "A Taxonomy for Autonomous Vehicles Considering Ambient Road Infrastructure," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    2. Aleksandra Kuzior & Dariusz Krawczyk & Paulina Brożek & Olena Pakhnenko & Tetyana Vasylieva & Serhiy Lyeonov, 2022. "Resilience of Smart Cities to the Consequences of the COVID-19 Pandemic in the Context of Sustainable Development," Sustainability, MDPI, vol. 14(19), pages 1-22, October.
    3. Krzysztof Bogusławski & Mateusz Gil & Jan Nasur & Krzysztof Wróbel, 2022. "Implications of autonomous shipping for maritime education and training: the cadet’s perspective," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(2), pages 327-343, June.
    4. James Campbell & Ángel Corberán & Isaac Plana & José M. Sanchis & Paula Segura, 2022. "Polyhedral analysis and a new algorithm for the length constrained K–drones rural postman problem," Computational Optimization and Applications, Springer, vol. 83(1), pages 67-109, September.
    5. Boglárka Eisinger Balassa & Réka Koteczki & Bence Lukács & László Buics, 2023. "Sustainability Aspects of Drone-Assisted Last-Mile Delivery Systems—A Discrete Event Simulation Approach," Energies, MDPI, vol. 16(12), pages 1-16, June.
    6. Tomasz Dudek & Artur Kujawski, 2022. "The Concept of Big Data Management with Various Transportation Systems Sources as a Key Role in Smart Cities Development," Energies, MDPI, vol. 15(24), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4034-:d:782225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.