IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3364-d770207.html
   My bibliography  Save this article

Conceptualization of Bioreactor Landfill Approach for Sustainable Waste Management in Karachi, Pakistan

Author

Listed:
  • Ihsanullah Sohoo

    (Circular Resource Engineering and Management (CREM), Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Blohmstr. 15, 21079 Hamburg, Germany
    Department of Energy and Environment Engineering, Dawood University of Engineering and Technology, Karachi 74800, Pakistan)

  • Marco Ritzkowski

    (Circular Resource Engineering and Management (CREM), Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Blohmstr. 15, 21079 Hamburg, Germany)

  • Muhammad Sultan

    (Department of Agriculture Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan)

  • Muhammad Farooq

    (Department of Mechanical Engineering (New Campus-KSK), University of Engineering and Technology, Lahore 54890, Pakistan)

  • Kerstin Kuchta

    (Circular Resource Engineering and Management (CREM), Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Blohmstr. 15, 21079 Hamburg, Germany)

Abstract

Finding a sustainable approach for municipal solid waste (MSW) management is becoming paramount. However, as with many urban areas in developing countries, the approach applied to MSW management in Karachi is neither environmentally sustainable nor suitable for public health. Due to adoption of an inefficient waste management system, society is paying intangible costs such as damage to public health and environment quality. In order to minimize the environmental impacts and health issues associated with waste management practices, a sustainable waste management and disposal strategy is required. The aim of this paper is to present a concept for the development of new bioreactor landfills for sustainable waste management in Karachi. Furthermore, this paper contributes to estimation of methane (CH 4 ) emissions from waste disposal sites by employing the First Order Decay (FOD) Tier 2 model of the Intergovernmental Panel on Climate Change (IPCC) and determining of the biodegradation rate constant ( k ) value. The design and operational concept of bioreactor landfills is formulated for the study area, including estimation of land requirement, methane production, power generation, and liquid required for recirculation, along with a preliminary sketch of the proposed bioreactor landfill. This study will be helpful for stockholders, policy makers, and researchers in planning, development, and further research for establishment of bioreactor landfill facilities, particularly in the study area as well as more generally in regions with a similar climate and MSW composition.

Suggested Citation

  • Ihsanullah Sohoo & Marco Ritzkowski & Muhammad Sultan & Muhammad Farooq & Kerstin Kuchta, 2022. "Conceptualization of Bioreactor Landfill Approach for Sustainable Waste Management in Karachi, Pakistan," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3364-:d:770207
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jouhara, H. & Czajczyńska, D. & Ghazal, H. & Krzyżyńska, R. & Anguilano, L. & Reynolds, A.J. & Spencer, N., 2017. "Municipal waste management systems for domestic use," Energy, Elsevier, vol. 139(C), pages 485-506.
    2. Sudhakar Yedla, 2005. "Modified landfill design for sustainable waste management," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 23(1), pages 93-105.
    3. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Zuberi, M. Jibran S. & Ali, Shazia F., 2015. "Greenhouse effect reduction by recovering energy from waste landfills in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 117-131.
    5. Ihsanullah Sohoo & Marco Ritzkowski & Zubair Ahmed Sohu & Senem Önen Cinar & Zhi Kai Chong & Kerstin Kuchta, 2021. "Estimation of Methane Production and Electrical Energy Generation from Municipal Solid Waste Disposal Sites in Pakistan," Energies, MDPI, vol. 14(9), pages 1-17, April.
    6. Raheem, Abdur & Hassan, Mohammad Yusri & Shakoor, Rabia, 2016. "Bioenergy from anaerobic digestion in Pakistan: Potential, development and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 264-275.
    7. Korai, Muhammad Safar & Mahar, Rasool Bux & Uqaili, Muhammad Aslam, 2017. "The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 338-353.
    8. Xunchang Fei & Mingliang Fang & Yao Wang, 2021. "Climate change affects land-disposed waste," Nature Climate Change, Nature, vol. 11(12), pages 1004-1005, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sajid, Muhammad & Raheem, Abdul & Ullah, Naeem & Asim, Muhammad & Ur Rehman, Muhammad Saif & Ali, Nisar, 2022. "Gasification of municipal solid waste: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Hridoy Roy & Samiha Raisa Alam & Rayhan Bin-Masud & Tonima Rahman Prantika & Md. Nahid Pervez & Md. Shahinoor Islam & Vincenzo Naddeo, 2022. "A Review on Characteristics, Techniques, and Waste-to-Energy Aspects of Municipal Solid Waste Management: Bangladesh Perspective," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    3. Wajih Ur Rehman & Kanwar Muhammad Javed Iqbal & Muhammad Irfan Khan & Wahid Ullah & Ashfaq Ahmad Shah & Muhammad Atiq Ur Rehman Tariq, 2022. "Multi-Criteria Relationship Analysis of Knowledge, Perception, and Attitude of Stakeholders for Engagement towards Maritime Pollution at Sea, Beach, and Coastal Environments," Sustainability, MDPI, vol. 14(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Ihsanullah Sohoo & Marco Ritzkowski & Kerstin Kuchta & Senem Önen Cinar, 2020. "Environmental Sustainability Enhancement of Waste Disposal Sites in Developing Countries through Controlling Greenhouse Gas Emissions," Sustainability, MDPI, vol. 13(1), pages 1-12, December.
    3. Ihsanullah Sohoo & Marco Ritzkowski & Zubair Ahmed Sohu & Senem Önen Cinar & Zhi Kai Chong & Kerstin Kuchta, 2021. "Estimation of Methane Production and Electrical Energy Generation from Municipal Solid Waste Disposal Sites in Pakistan," Energies, MDPI, vol. 14(9), pages 1-17, April.
    4. Longsheng, Cheng & Ali Shah, Syed Ahsan & Solangi, Yasir Ahmed & Ahmad, Munir & Ali, Sharafat, 2022. "An integrated SWOT-multi-criteria analysis of implementing sustainable waste-to-energy in Pakistan," Renewable Energy, Elsevier, vol. 195(C), pages 1438-1453.
    5. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    6. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    7. Korai, Muhammad Safar & Mahar, Rasool Bux & Uqaili, Muhammad Aslam, 2017. "The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 338-353.
    8. Safar, Korai Muhammad & Bux, Mahar Rasool & Faria, Uqaili & Pervez, Shaikh, 2021. "Integrated model of municipal solid waste management for energy recovery in Pakistan," Energy, Elsevier, vol. 219(C).
    9. Dastjerdi, B. & Strezov, V. & Kumar, R. & Behnia, M., 2019. "An evaluation of the potential of waste to energy technologies for residual solid waste in New South Wales, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Ihsanullah Sohoo & Marco Ritzkowski & Jinyang Guo & Kiran Sohoo & Kerstin Kuchta, 2022. "Municipal Solid Waste Management through Sustainable Landfilling: In View of the Situation in Karachi, Pakistan," IJERPH, MDPI, vol. 19(2), pages 1-25, January.
    11. Antonio Jacintos Nieves & Gian Carlo Delgado Ramos, 2023. "Advancing the Application of a Multidimensional Sustainable Urban Waste Management Model in a Circular Economy in Mexico City," Sustainability, MDPI, vol. 15(17), pages 1-23, August.
    12. Nicole Meinusch & Susanne Kramer & Oliver Körner & Jürgen Wiese & Ingolf Seick & Anita Beblek & Regine Berges & Bernhard Illenberger & Marco Illenberger & Jennifer Uebbing & Maximilian Wolf & Gunter S, 2021. "Integrated Cycles for Urban Biomass as a Strategy to Promote a CO 2 -Neutral Society—A Feasibility Study," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    13. Sanjay RODE, 2020. "Population Growth And Bottlenecks In Provision Of Qualitative Public Infrastructure Services In Thane Municipal Corporation," Business Excellence and Management, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 10(4), pages 94-115, December.
    14. Malak Anshassi & Timothy G. Townsend, 2023. "The hidden economic and environmental costs of eliminating kerb-side recycling," Nature Sustainability, Nature, vol. 6(8), pages 919-928, August.
    15. Jibran Hussain & Sallahuddin Hassan, 2019. "Oil Prices Dynamics and the State of Energy Crisis in Pakistan," Pakistan Journal of Humanities and Social Sciences, International Research Alliance for Sustainable Development (iRASD), vol. 7(2), pages :203-217, June.
    16. Fazal, Rizwan & Rehman, Syed Aziz Ur & Bhatti, M. Ishaq, 2022. "Graph theoretic approach to expose the energy-induced crisis in Pakistan," Energy Policy, Elsevier, vol. 169(C).
    17. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    18. Giovanni Gadaleta & Sabino De Gisi & Francesco Todaro & Michele Notarnicola, 2022. "Carbon Footprint and Total Cost Evaluation of Different Bio-Plastics Waste Treatment Strategies," Clean Technol., MDPI, vol. 4(2), pages 1-14, June.
    19. Iqbal, Jamshed & Khan, Zeashan Hameed, 2017. "The potential role of renewable energy sources in robot's power system: A case study of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 106-122.
    20. Gabriella Esposito De Vita & Cristina Visconti & Gantuya Ganbat & Marina Rigillo, 2023. "A Collaborative Approach for Triggering Environmental Awareness: The 3Rs for Sustainable Use of Natural Resources in Ulaanbaatar (3R4UB)," Sustainability, MDPI, vol. 15(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3364-:d:770207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.