IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p980-d725791.html
   My bibliography  Save this article

Durability Assessment of ETICS: Comparative Evaluation of Different Insulating Materials

Author

Listed:
  • Roberto Landolfi

    (Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, 80125 Naples, Italy)

  • Maurizio Nicolella

    (Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, 80125 Naples, Italy)

Abstract

The External Thermal Insulation Composite System (ETICS) is a common cladding technology that is widely used thanks to its well-known advantages. Despite previous studies dealing with ETICS durability in real-building case studies or involving accelerated ageing tests in climatic chambers, little progress has been made in the knowledge of the long-term durability of the system. In order to realize optimized maintenance plans for this component, the durability of the whole system, and of the most-used insulating materials for the ETICS (i.e., cork, polyurethane, rock wool, glass wool, grey EPS, and fiberfill wood), has been investigated. Based on previous experiments on ageing cycles, different climatic chambers were used to accelerate performance decay by simulating natural outdoor exposure in order to assess different physical and thermal characteristics (thermal transmittance, decrement factor, time shift, water absorption, thermal resistance, and conductivity). Recorded trends show that materials with lower thermal conductivity exhibit lower performance decay, and vice versa. The durability of the ETICS with different insulating materials (as the only variable in the different samples) was evaluated in order to quantify service life and then correctly plan maintenance interventions. Life-cycle assessment must take into account service life and durability for each material of the system. A higher durability of insulating materials allows for the execution of less maintenance interventions, with the loss of less performance over time. This study shows the physical and thermal behavior of the ETICS during its service life, comparing the differences induced by the most-used insulating materials. As a result of accelerated ageing cycles, the analyzed ETICS reveals a low grade of decay and measured performances show little degradation; for thermal conductivity, differences between the measured and the declared conductivities by technical datasheet were observed.

Suggested Citation

  • Roberto Landolfi & Maurizio Nicolella, 2022. "Durability Assessment of ETICS: Comparative Evaluation of Different Insulating Materials," Sustainability, MDPI, vol. 14(2), pages 1-25, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:980-:d:725791
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    2. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. António Curado & Ricardo Figueiras & Hélder Gonçalves & Filipe Sambento & Leonel J. R. Nunes, 2023. "Novel High-Performance ETICS Coatings with Cool Pigments Incorporation," Sustainability, MDPI, vol. 15(12), pages 1-13, June.
    2. Diana D’Agostino & Roberto Landolfi & Maurizio Nicolella & Francesco Minichiello, 2022. "Experimental Study on the Performance Decay of Thermal Insulation and Related Influence on Heating Energy Consumption in Buildings," Sustainability, MDPI, vol. 14(5), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tilmann Rave, 2013. "Innovation Indicators on Global Climate Change – R&D Expenditure and Patents," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    2. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    3. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    4. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    5. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    6. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    7. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    8. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    9. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    10. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    11. Perrihan Al-Riffai & Julian Blohmke & Clemens Breisinger & Manfred Wiebelt, 2015. "Harnessing the Sun and Wind for Economic Development? An Economy-Wide Assessment for Egypt," Sustainability, MDPI, vol. 7(6), pages 1-27, June.
    12. Kim, Yeong Jae & Wilson, Charlie, 2019. "Analysing energy innovation portfolios from a systemic perspective," Energy Policy, Elsevier, vol. 134(C).
    13. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    14. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    15. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    16. Jin-Young Kim & Hyun-Goo Kim & Yong-Heack Kang, 2017. "Offshore Wind Speed Forecasting: The Correlation between Satellite-Observed Monthly Sea Surface Temperature and Wind Speed over the Seas around the Korean Peninsula," Energies, MDPI, vol. 10(7), pages 1-15, July.
    17. Frame, Damien & Hannon, Matthew & Bell, Keith & McArthur, Stephen, 2018. "Innovation in regulated electricity distribution networks: A review of the effectiveness of Great Britain's Low Carbon Networks Fund," Energy Policy, Elsevier, vol. 118(C), pages 121-132.
    18. Silva Herran, Diego & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Global assessment of onshore wind power resources considering the distance to urban areas," Energy Policy, Elsevier, vol. 91(C), pages 75-86.
    19. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    20. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "A comparison of carbon allocation schemes: On the equity-efficiency tradeoff," Energy, Elsevier, vol. 74(C), pages 222-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:980-:d:725791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.